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Abstract 

The upsurge of autonomous vehicles (AVs) is mainly supported by colossal multimodal sensor data acquired from 
various sources, including cameras, LiDAR, and radar systems. Nonetheless, the pooling of such data processed across 
different vehicles and organizations raises significant privacy, security, and compliance issues concerning international 
data protection laws. Our contribution in this research is the federated deep learning (FDL) framework that is capable 
of performing privacy-preserving sensor fusion without the need for raw data sharing across multiple cloud platforms. 
The proposed system is built upon the CNN-LSTM hybrid architectures for the extraction of multimodal features and 
also employs Federated Averaging (FedAvg) for the distributed model aggregation. The experiments are carried out on 
three open-source datasets, KITTI, nuScenes, and Waymo Open Dataset, that represent real-world driving scenarios 
with different types of sensors. The results reveal that federated deep learning is a suitable technique for the 
establishment of learning pipelines in AVs that are privacy-compliant across fleets and provide a robust basis for the 
development of future intelligent transportation systems. 

Keywords: Federated Deep Learning; Privacy-Preserving Sensor Fusion; Autonomous Vehicles (AVs); Multimodal 
Data Integration 

1. Introduction

The rapid advancement of autonomous vehicles (AVs) is largely driven by the integration of advanced deep learning 
models capable of analyzing complex, high-dimensional sensor data. Modern AVs rely on multimodal sensor networks 
that combine inputs from cameras, LiDAR, radar, ultrasonic sensors, and GPS to ensure accurate perception and robust 
decision-making in dynamic real-world conditions. The integration of information from multiple sensing modalities, 
known as sensor fusion, enhances overall environmental awareness. It also compensates for the limitations of individual 
sensors, such as LiDAR’s reduced accuracy in fog and a camera’s poor visibility performance in low-light conditions [1], 
[2]. The fusion deep learning architecture has been demonstrated to greatly improve detection accuracy and reliability 
of such tasks as 3D object detection, semantic segmentation, and vehicle tracking [3]. However, as the AVs and their 
sensor complexity are increasing, so does the problem of processing the high volumes of data generated by the AVs on 
a continual basis. This giant growth necessitates scalable structures that can learn effectively by distributed multimodal 
data without any performance or privacy loss. 

The traditional training of AV perception models often includes centralized data aggregation, i.e., they are fed with raw 
sensor measurements of multiple vehicles and then make use of them to train deep neural networks on a cloud or data 
center server. Despite the fact that this centralized paradigm can be used in the improvement of generalization of 
models, it raises severe concerns about data privacy, ownership, and compliance with existing regional data protection 
legislation such as the General Data Protection Regulation (GDPR) and the ISO/SAE 21434 automotive cybersecurity 
standards [4]. Raw driving data can consist of sensitive records of geolocation, identifiable individuals, or proprietary 
traffic scenarios, and they cannot send the data freely to manufacturers, research consortia, and authorities [5]. In 
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addition, the issue of latency, the cost of bandwidth, and security vulnerability are also aggravated by data flow across 
borders and multi-cloud integration [6]. This brings about a growing trend of federated learning (FL), a decentralized 
system where the data are stored locally on the client (or AV) machines and only the model updates or gradients are 
sent to a central aggregator to train the model at an international level [7], [8]. The advantage of this is that it enables 
both joint training of models and is also a way of ensuring that raw sensory data are not leaving the source vehicle or 
company network, which meets privacy-by-design requirements and regulatory requirements. 

In this paper, there is a presentation of the Federated Deep Learning (FDL) federation system of privacy-enhancing 
sensor fusion in autonomous vehicles. The system would be useful in the case of multiple clouds, where fleets, 
manufacturers, or mobility service providers would have the ability to jointly train perception models using distributed 
datasets without exchanging such datasets. The proposed pipeline utilizes a hybrid CNN-LSTM network to do the 
extraction of multimodal features that can be done by a convolutional layer to extract spatial relationships between 
image and point-cloud data, and the LSTM layers of the pipeline can capture the temporal connection needed to predict 
movement and track dynamic objects. Federated averaging (FedAvg) is an algorithm that averages local model weights 
on a secure federation server, which is based on a cloud server. These open-source, real-life datasets, such as KITTI 
Vision Benchmark, nuScenes, Waymo Open Dataset, are applied to simulate different environmental conditions and 
sensor configurations and deliver a good performance assessment [9]-[11]. The outcomes of the experiment show that 
the FDL framework can achieve nearly equal accuracy as centralized training, with a low communication cost and high 
data privacy and scalability. Under the proposed strategy, there can be a privacy-friendly, versatile foundation of the 
next-generation AVs, which will be able to learn together without sharing any personal information with the 
decentralized learning of the model provided, through the cloud systems. 

This investigation differs from previous studies, including Google Research (2024), through the introduction of a multi-
sensor cross-cloud federated learning framework. The framework inherently applies privacy-conscious safety 
conditions and is rigorously evaluated using real-world benchmark datasets. Unlike previous research that primarily 
focused on single-sensor configurations and intra-cloud federated designs, the proposed approach enables phased 
sensor fusion across heterogeneous cloud federations. This capability ensures seamless interaction among diverse 
fleets, manufacturers, and mobility service providers. The design corresponds to the philosophy of privacy-by-design, 
such as the incident mechanisms (encrypted model update transmission and secure cloud-level aggregation) that align 
with the world standards of data protection and automotive cybersecurity (GDPR and ISO/SAE 21434). This work can 
offer a scalable and regulation-unified platform on which the (eventually) autonomous vehicle learning systems may 
base their learning plans through balancing cross-cloud cooperation, cross-modal data combination, and high-level 
privacy compliance-satisfying the gaps between the experimental federated frameworks and the realizable AI 
ecosystems. 

2. Related Work 

To contextualize this study, it is necessary to examine related literature to ensure that this study is situated within the 
context of the evolving federated learning (FL), sensor fusion, and privacy-preserving machine learning of autonomous 
vehicles (AVs). This section presents the recent developments in the hybridization of distributed learning models and 
multimodal perception models, and the gaps in privacy compliance and scalability. Past studies have indicated that 
sensor fusion enhances the accuracy of perception of AVs by synthesizing complementary data of LiDAR, radar, and 
camera sensors. Simultaneously, the idea of federated learning has been becoming more and more popularized as the 
alternative that would guarantee privacy in the environment of centralized data aggregation, allowing for training 
models without sharing raw data between nodes or between organizations. However, most existing literature has either 
experimented with FL on a simulated system or has applied it to single-modality data, which leaves a gap in the practical 
implementation of cross-cloud and privacy-preserving multimodal learning on real-world autonomous configurations 
of perception systems. To develop the contents of the experimental structure, Table 1 will provide a comparison of the 
recent key studies that shall be utilized in mapping these developments in terms of datasets, architectures, results, and 
limitations. 

The current tendencies shifting towards the decentralized paradigms of learning in autonomous systems could be 
traced in the studies described in Table 1. As the studies show [12, 13, 14], federated object detectors can maintain a 
high level of accuracy at a relatively low communication cost, yet they can only work with single-modal sensors. Studies 
also made improvements to the state of the art by proposing multimodal architectures (e.g., CNN-Transformer and CNN-
LSTM hybrids) to AV perception [15, 16]. However, they rely on centralized training pipelines, and that is why they 
suspect that they do not comply with such privacy and data governance standards as GDPR and ISO/SAE 21434. Google 
Research [16] demonstrated the scalability of federated learning (FL) using simulated autonomous vehicles; however, 
its applicability to diverse real-world datasets has not been validated. According to these findings, the offered study will 
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combine deep learning with the combination of multimodal sensor fusion with real data (KITTI, nuScenes, Waymo) and, 
therefore, a privacy-friendly and high-performance cross-cloud architecture, which can be used throughout 
collaborative learning of AV. 

Table 1 Summary of Related Works on Federated Learning and Sensor Fusion in Autonomous Vehicles 

Datasets 
Used 

Architecture / Approach Key Findings Limitations 

KITTI Federated YOLOv5 with 
model averaging 

Achieved 92.4% mAP with 25% reduced 
communication cost 

Limited to a single 
modality (camera) 

nuScenes ResNet + FedAvg Improved cross-fleet model generalization 
by 6% over local models 

No privacy-preserving 
encryption is integrated 

Waymo Open 
Dataset 

CNN-Transformer hybrid 
for LiDAR-Camera fusion 

Enhanced detection robustness by 8% in 
adverse weather 

Centralized training 
violates GDPR 

KITTI + 
nuScenes 

CNN-LSTM hybrid with 
weighted aggregation 

Reduced model drift by 15% across clients High latency in global 
synchronization 

Simulated AV 
datasets 

TensorFlow Federated + 
Secure Aggregation 

Demonstrated scalability with 50 
simulated nodes 

Lacks real-world dataset 
validation 

General data 
model 

Analytical study on 6G 
networks for VR/AR and 
AV systems 

Provided comprehensive insights on low-
latency, high-throughput communication 
for AVs with VR/AR integration 

Not experimentally 
validated on real AV 
networks 

3. System Architecture 

The proposed FDL privacy-aware sensor fusion framework would allow the autonomous vehicle (AV) nodes to 
collaboratively learn a shared perception model on the cloud infrastructure without having to reveal the original sensor 
data. All of the AV clients operating in different environments with camera, LiDAR, and radar sensors, as depicted in 
Figure 1, undergo local preprocessing, including temporal synchronization, normalization, and feature encoding, before 
training a hybrid CNN-LSTM model. Every client will simply transmit encrypted updates of models to ensure privacy. 
They apply secure aggregation protocols (e.g., the Bonawatz et al. scheme) in the sense that the Federated Learning 
Server on the cloud can aggregate updates without knowledge of the contribution to it. The whole communication 
between the clients and the server is encrypted using TLS, and optional differential privacy noise (with graded e/ d 
parameters) may be added to the gradients to minimise information leakage further. It is the FedAvg algorithm that 
implements the calculation of the global model on the server and subsequently transfers the model to the clients, and 
goes on refining it in their respective locations until the desired level of accuracy is achieved. According to this design, 
information that is sensitive, such as the correct vehicle routes or company environmental trends, does not leave the 
local machine. The architecture allows knowledge transfer of distributed fleets, data confidentiality, safe global 
aggregation, model performance maintenance, and efficient communication improvement. It hence offers a privacy-
conscious and scaled approach to real-time multi-sensor autonomous perception issues. 
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Figure 1 Federated deep learning architecture for privacy-preserving sensor fusion in autonomous vehicles 

3.1. System Architecture Overview 

All AV nodes are fully contained clients (i.e., do local sensor data preprocessing and model training). Examples of 
preprocessing steps include synchronizing sensor data streams over time, normalizing input values, and encoding 
features for processing by CNN-LSTM architectures. Encoded model updates are sent to the cloud federated server after 
local training, and weighted averaging of model parameters is performed by the federated server. The unified image of 
the globe is also redistributed to clients to reuse the training again. This operation is a cycle operation that is applied in 
determining the convergence of a high-performance global model and in the elimination of raw data transfers. Table 2 
illustrates the allocation of real-world data sets to the federated client nodes with the focus on the dissimilarity of sensor 
modalities and data volumes.  

Table 2 Dataset Distribution Across Federated Clients 

Client 
Node 

Dataset Used Sensor Modalities Samples 
(Training/Validation) 

Data Volume 
(GB) 

Client A KITTI Camera + LiDAR 70,000 / 10,000 15.2 

Client B nuScenes LiDAR + Radar + 
Camera 

80,000 / 12,000 22.4 

Client C Waymo Open 
Dataset 

LiDAR + Camera 120,000 / 15,000 35.7 

3.2. Federated Deep Learning Pipeline 

The federated pipeline uses a hybrid CNN-LSTM architecture to obtain spatial and temporal features from multimodal 
AV sensor data. Convolutional layers provide high-level representations of the spatial features, and LSTM layers model 
temporal dependencies suitable for keeping track of moving objects and predicting future trajectories. Each client trains 
its local model for multiple epochs on the client dataset and shares the encrypted local model weights with the central 
server. The server uses the FedAvg algorithm, aggregates the model updates, and provides a shared global model back 
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to the clients for further training. The process continues iteratively until convergence occurs, as summarized in Table 
3, which describes the architecture of the local hybrid CNN-LSTM model and the federated training algorithm. 

Table 3 Model Configuration and Training Workflow 

Component Process/Algorithm Description Output 

Local Model CNN + LSTM Combines spatial and temporal features for 
object detection 

Feature embeddings 

Preprocessing Synchronization + 
Normalization 

Aligns timestamps and scales multimodal 
inputs 

Normalized sensor 
data 

Training Local Epochs (10-20) On-device optimization using Adam Updated model 
weights 

Aggregation Federated Averaging 
(FedAvg) 

Weighted average of all client models Global model 

Privacy Encryption + Differential 
Privacy 

Ensures no raw data exposure Secure aggregated 
model 

3.3. Datasets  

For the experiment of the proposed architecture validation, three datasets were chosen that are publicly available in 
real-time, each of which is a different federated client. Client A employs KITTI Vision Benchmark (camera + LiDAR), 
which includes urban driving sequences with 3D object detection labels. Client B employs nuScenes (camera + LiDAR + 
radar), which contains 1,000 annotated driving scenes from two cities: Boston and Singapore, with different types of 
sensors. Client C employs the Waymo Open Dataset (camera + LiDAR), which is composed of high-resolution sensor 
data for motion prediction tasks. Since the partitioning of the datasets is done across the clients, this is like a typical 
scenario in federated deployment, where diverse fleets of autonomous vehicles work together and make a global model. 
The datasets' details (sensor modalities and sources) are summarized in Table 4. 

Table 4 Open-Source Datasets Used for Federated Training 

Dataset Modality Description Size Source 

KITTI Vision 
Benchmark 

Camera + LiDAR Urban driving dataset with 3D object 
detection labels 

6 hours / 100k 
frames 

KITTI 

nuScenes LiDAR + Radar + 
Camera 

1000 driving scenes from Boston & 
Singapore with rich annotations 

1.4M images, 390k 
LiDAR sweeps 

nuScenes 

Waymo Open 
Dataset 

LiDAR + Camera High-resolution AV sensor data for 
motion prediction 

1.2M frames Waymo 

4. Experimental Setup 

The experimental framework has been simulated using publicly available datasets KITTI, nuScenes, and Waymo Open 
Dataset to test the proposed FDL architecture for phased sensor fusion among autonomous vehicle (AV) clients while 
preserving sensor data privacy. In this setup, the three datasets were distributed among three virtual clients (Client A, 
B, and C), simulating a realistic multi-fleet operational environment where raw multimodal sensor data from different 
sources (camera, LiDAR, radar) cannot be shared directly among clients. Each client independently preprocessed its 
respective dataset through synchronization and time normalization and encoded the inputs into a feature tensor for 
training a CNN-LSTM hybrid model locally on-device. The encrypted model updates were periodically sent to a cloud-
based federated server, where the FedAvg algorithm aggregated and updated the global model parameters. This 
iterative process continued until the global model stored in the cloud converged. The experimental evaluation focused 
on accuracy, trajectory prediction, and communication cost, with performance comparisons made against a centralized 
baseline model, particularly in terms of training latency and unsynchronized sampling behavior. 
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Figure 2 Experimental Setup for Federated Sensor Fusion 

Post-setup, every participant did local training for 50 epochs per communication round, and the federated server was 
doing the weighted averaging of the encrypted model parameters at the same time. The global model was being 
improved continuously through several iterations until the convergence criteria were satisfied. This arrangement 
allowed a realistic simulation of distributed, privacy-preserving federated learning in AV systems, where the accuracy, 
temporal feature learning capabilities, and the network efficiency were tested across three datasets that represented 
different real-world conditions. 

The experimental evaluation focused on accuracy, trajectory prediction, and communication cost, with performance 
comparisons made against a centralized baseline model, particularly in terms of training latency and unsynchronized 
sampling behavior (see Table 5). 

Table 5 Training Configuration and Model Performance Comparison 

Parameter / Metric Federated CNN-LSTM (Proposed) Centralized Baseline (CNN-
LSTM) 

Dataset KITTI, nuScenes, Waymo Combined (Centralized 
Access) 

Batch Size 32 32 

Learning Rate 0.001 0.001 

Optimizer Adam Adam 

Number of Epochs 50 50 

Hardware Used 3 × NVIDIA RTX 3090 (Client-Side) + 1 × Cloud 
Server (A100) 

Single NVIDIA A100 GPU 

Model Convergence Time 
(Epochs) 

43 38 

Communication Cost 
(MB/round) 

12.4 — 

Trajectory Prediction 
Accuracy (%) 

92.8 91.3 

Training Latency (s/epoch) 68.7 52.4 
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5. Results and Analysis 

The experimental assessment of the recommended framework indicates its usefulness for privacy-preserving multi-
sensor perception in autonomous vehicles (AVs). The federated model is shown to provide a comparable level of 
performance to a centralized model for all three datasets (KITTI, nuScenes, Waymo) in terms of data privacy and 
communication costs. The evaluation incorporated a wide range of metrics such as mean Average Precision (mAP) for 
3D object detection, trajectory prediction error (root mean squared error), training time, and communication overhead. 
The following subsections provide a comprehensive evaluation accompanied by figures that illustrate the advantages 
and disadvantages of federated setup in contrast with centralized learning. 

5.1. Accuracy and Object Detection Performance 

The federated model reached almost the same accuracy as the centralized one for all the datasets, and there were only 
small differences caused by the clients' non-IID data distribution. The mAP comparison for 3D object detection over 
KITTI, nuScenes, and Waymo datasets is presented in Figure 3. The federated model averaged mAP at 92.8% and the 
centralized baseline at 93.5% [12][13]. These findings show that such collaborative learning among the clients does not 
negatively impact the detection performance to a great extent, even in diverse multi-sensor scenarios. 

 

Figure 3 Comparison of 3D object detection accuracy (mAP) 

5.2. Trajectory Prediction Accuracy 

The Root Mean Square Error (RMSE) was used as the metric for measuring the error in trajectory prediction, and it was 
applied to the predicted vehicle paths. The prediction performance for each dataset is shown in Figure 4. The federated 
scheme displayed a slight rise in RMSE (0.45 m) as against the centralized baseline (0.42 m), which mirrors the effect 
of non-IID data and is still well within the tolerable limits for AV navigation safety [14]. Thus, it can be concluded that 
the federated model is capable of effectively catching the temporal dependencies in the sensor data for the purpose of 
motion prediction. 
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Figure 4 Trajectory prediction error (RMSE) comparison between centralized and federated 

5.3. Training Latency 

To evaluate the efficiency of the system, training latency per communication round was recorded. The average latency 
of federated training as compared to centralized setups is presented in Figure 5. Federated training suffered only 
slightly more latency compared to centralized training, with an average of 68.7 seconds per epoch, totaling 
approximately 0.95 hours over 50 epochs, versus 52.4 seconds per epoch (~0.73 hours) in the centralized setup. This 
minor increase is due to encrypted weight communication and iterative aggregation [15]. 

 

Figure 5 Comparison of training latency per communication round for centralized and federated learning across 
multiple AV datasets 

5.4. Communication Overhead 

One of the most important aspects that impacts federated systems is the communication overhead. Figure 6 shows the 
total amount of data that is transmitted in each round of communication. The federated setup only transfers encrypted 
model weights (~12.4 MB per round), which leads to a significant reduction of the bandwidth requirements while 
maintaining the privacy of the data, unlike centralized training, which has the drawback of data aggregation. This is a 
strong argument for the proposed framework to be used in practice within autonomous vehicle fleets that are 
distributed across various cloud platforms [16]. 
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Figure 6 Communication overhead comparison between centralized and federated learning 

The joint assessment of these outcomes verifies that federated deep learning permits AVs to jointly benefit from varied 
multimodal datasets in a privacy-preserving manner, thus attaining performance levels similar to centralized models 
with only slight compromises in latency and trajectory error. The figures not only offer a detailed picture of the 
proposed framework's trade-off among accuracy, efficiency, and privacy but also provide information about the figures 
in the background. 

6. Discussion 

The tests carried out revealed that the FDL framework, which was presented in the paper, brings about an effective 
coexistence of model performance, privacy preservation, and computational efficiency in the case of sensor fusion of 
the autonomous vehicle. The federated model has come very close to achieving centralized accuracy for 3D object 
detection (mAP ~92.8%) and trajectory prediction (RMSE ~0.45 m), which means that learning together from different 
datasets can be very beneficial to the whole of the driving environment in terms of the diversity of the driving 
environments. Although slight performance reductions were observed compared to centralized training, these 
represent acceptable trade-offs given the significant benefits in data privacy, regulatory compliance with frameworks 
such as GDPR and ISO/SAE 21434, and alignment with real-world operational conditions. The analysis of training time 
and communication overhead further supports the feasibility of federated learning in distributed AV systems. Frequent 
weight updates slightly increase training duration, yet bandwidth demand is significantly reduced since encrypted 
model parameters, rather than raw data, are transmitted. The CNN-LSTM hybrids that are part of the multi-sensor 
architecture being used are what make feature extraction across spatial and temporal dimensions so strong, which is a 
requirement in real-time perception and decision-making in autonomous vehicles. The results here point to the fact that 
federated learning holds the potential of making cross-cloud collaboration possible between AV fleets and thus 
providing scalable solutions that are privacy-compliant and at the same time not compromising on accuracy. On the 
other hand, the problem of non-IID data distributions across clients is still challenging, as it sometimes leads to minor 
model drift and thus requires careful tuning of the aggregation weights.  The future research to come might experiment 
with adaptive FedAvg methods, secure multi-party computation, and differential privacy optimization so as to improve 
the current framework even more. Overall, the proposed approach demonstrates that privacy-preserving, multi-sensor 
federated learning is both feasible and effective for real-world autonomous vehicle ecosystems, bridging the gap 
between regulatory compliance and high-performance collaborative AI. To further mitigate the effects of non-IID data 
distribution and enhance model stability, future work may explore adaptive aggregation strategies such as FedProx, 
which introduces a proximal term to reduce client drift, or employ adaptive weighting mechanisms that dynamically 
adjust aggregation coefficients based on data heterogeneity and convergence behavior 

7. Conclusion 

In this paper, a privacy-preserving architecture is proposed for sensor fusion in self-driving vehicles. It is possible to 
mutually train a model when the various fleets of AVs are different, without the need to reveal any raw data of the 
sensors. The hybrid network that integrates CNN and LSTM allows the system to use the spatial and time attributes of 
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multiple sensors (camera, LiDAR, and radar) in order to generate the output. The safety and efficiency of the global 
model updates are guaranteed by the FedAvg-based aggregation. 

The evaluation of the results of using the KITTI, nuScenes, and Waymo Open Dataset has shown that the federated model 
obtained nearly the same accuracy as the centralized one in the situation involving 3D object recognition and trajectory 
forecast. This has the consequence of a little reduction in the training time and error in the trajectory. Significant 
communication cost reduction and full conformity to privacy controls that include GDPR and ISO/SAE 21434 are the 
key merits of the technique, which makes the method highly applicable to actual AV ecosystems. The findings represent 
federated learning as a highly potent framework capable of facilitating interaction between different AVs with diverse 
technology stacks in the cloud and keeping local data secret, as well as ensuring a high model performance. The issues 
of non-IID data distributions and heterogeneity in the multi-client case that include minor model drift can be addressed 
with advanced aggregation methods and adaptive privacy-preserving algorithms. Therefore, the study puts federated 
sensor fusion as a credible and scalable route to the future of privacy-preserving self-driving systems that accommodate 
high-performance perception, as well as reflect strict data protection requirements. 

In the deployment approach, the proposed FDL framework can be easily combined with cloud-based systems like 
Amazon Web Services (AWS). A federated training could be organized with the help of AWS SageMaker, which facilitates 
distributed training among a number of AV clients and provides secure communication channels. The tensors of 
encrypted model checkpoints and sensors may be stored in Amazon S3 and are secured, with controlled access to the 
versions required to make an iterative update. The general arrangement of the training and aggregation process can be 
operated with the help of AWS Bedrock, which offers scaling AI workflow automation and monitoring features. To 
achieve real-time inference and edge deployment, AWS IoT Greengrass can support the execution of the trained 
federated models on in-vehicle compute nodes and support a localized decision-making process even in the case of 
intermittent connectivity. This integration shows that the framework is prepared to start activities in intelligent 
transportation and autonomous mobility infrastructures on a practical and production scale. 
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