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Abstract

The upsurge of autonomous vehicles (AVs) is mainly supported by colossal multimodal sensor data acquired from
various sources, including cameras, LiDAR, and radar systems. Nonetheless, the pooling of such data processed across
different vehicles and organizations raises significant privacy, security, and compliance issues concerning international
data protection laws. Our contribution in this research is the federated deep learning (FDL) framework that is capable
of performing privacy-preserving sensor fusion without the need for raw data sharing across multiple cloud platforms.
The proposed system is built upon the CNN-LSTM hybrid architectures for the extraction of multimodal features and
also employs Federated Averaging (FedAvg) for the distributed model aggregation. The experiments are carried out on
three open-source datasets, KITTI, nuScenes, and Waymo Open Dataset, that represent real-world driving scenarios
with different types of sensors. The results reveal that federated deep learning is a suitable technique for the
establishment of learning pipelines in AVs that are privacy-compliant across fleets and provide a robust basis for the
development of future intelligent transportation systems.

Keywords: Federated Deep Learning; Privacy-Preserving Sensor Fusion; Autonomous Vehicles (AVs); Multimodal
Data Integration

1. Introduction

The rapid advancement of autonomous vehicles (AVs) is largely driven by the integration of advanced deep learning
models capable of analyzing complex, high-dimensional sensor data. Modern AVs rely on multimodal sensor networks
that combine inputs from cameras, LiDAR, radar, ultrasonic sensors, and GPS to ensure accurate perception and robust
decision-making in dynamic real-world conditions. The integration of information from multiple sensing modalities,
known as sensor fusion, enhances overall environmental awareness. It also compensates for the limitations of individual
sensors, such as LiDAR’s reduced accuracy in fog and a camera’s poor visibility performance in low-light conditions [1],
[2]. The fusion deep learning architecture has been demonstrated to greatly improve detection accuracy and reliability
of such tasks as 3D object detection, semantic segmentation, and vehicle tracking [3]. However, as the AVs and their
sensor complexity are increasing, so does the problem of processing the high volumes of data generated by the AVs on
a continual basis. This giant growth necessitates scalable structures that can learn effectively by distributed multimodal
data without any performance or privacy loss.

The traditional training of AV perception models often includes centralized data aggregation, i.e., they are fed with raw
sensor measurements of multiple vehicles and then make use of them to train deep neural networks on a cloud or data
center server. Despite the fact that this centralized paradigm can be used in the improvement of generalization of
models, it raises severe concerns about data privacy, ownership, and compliance with existing regional data protection
legislation such as the General Data Protection Regulation (GDPR) and the ISO/SAE 21434 automotive cybersecurity
standards [4]. Raw driving data can consist of sensitive records of geolocation, identifiable individuals, or proprietary
traffic scenarios, and they cannot send the data freely to manufacturers, research consortia, and authorities [5]. In
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addition, the issue of latency, the cost of bandwidth, and security vulnerability are also aggravated by data flow across
borders and multi-cloud integration [6]. This brings about a growing trend of federated learning (FL), a decentralized
system where the data are stored locally on the client (or AV) machines and only the model updates or gradients are
sent to a central aggregator to train the model at an international level [7], [8]. The advantage of this is that it enables
both joint training of models and is also a way of ensuring that raw sensory data are not leaving the source vehicle or
company network, which meets privacy-by-design requirements and regulatory requirements.

In this paper, there is a presentation of the Federated Deep Learning (FDL) federation system of privacy-enhancing
sensor fusion in autonomous vehicles. The system would be useful in the case of multiple clouds, where fleets,
manufacturers, or mobility service providers would have the ability to jointly train perception models using distributed
datasets without exchanging such datasets. The proposed pipeline utilizes a hybrid CNN-LSTM network to do the
extraction of multimodal features that can be done by a convolutional layer to extract spatial relationships between
image and point-cloud data, and the LSTM layers of the pipeline can capture the temporal connection needed to predict
movement and track dynamic objects. Federated averaging (FedAvg) is an algorithm that averages local model weights
on a secure federation server, which is based on a cloud server. These open-source, real-life datasets, such as KITTI
Vision Benchmark, nuScenes, Waymo Open Dataset, are applied to simulate different environmental conditions and
sensor configurations and deliver a good performance assessment [9]-[11]. The outcomes of the experiment show that
the FDL framework can achieve nearly equal accuracy as centralized training, with a low communication cost and high
data privacy and scalability. Under the proposed strategy, there can be a privacy-friendly, versatile foundation of the
next-generation AVs, which will be able to learn together without sharing any personal information with the
decentralized learning of the model provided, through the cloud systems.

This investigation differs from previous studies, including Google Research (2024), through the introduction of a multi-
sensor cross-cloud federated learning framework. The framework inherently applies privacy-conscious safety
conditions and is rigorously evaluated using real-world benchmark datasets. Unlike previous research that primarily
focused on single-sensor configurations and intra-cloud federated designs, the proposed approach enables phased
sensor fusion across heterogeneous cloud federations. This capability ensures seamless interaction among diverse
fleets, manufacturers, and mobility service providers. The design corresponds to the philosophy of privacy-by-design,
such as the incident mechanisms (encrypted model update transmission and secure cloud-level aggregation) that align
with the world standards of data protection and automotive cybersecurity (GDPR and ISO/SAE 21434). This work can
offer a scalable and regulation-unified platform on which the (eventually) autonomous vehicle learning systems may
base their learning plans through balancing cross-cloud cooperation, cross-modal data combination, and high-level
privacy compliance-satisfying the gaps between the experimental federated frameworks and the realizable Al
ecosystems.

2. Related Work

To contextualize this study, it is necessary to examine related literature to ensure that this study is situated within the
context of the evolving federated learning (FL), sensor fusion, and privacy-preserving machine learning of autonomous
vehicles (AVs). This section presents the recent developments in the hybridization of distributed learning models and
multimodal perception models, and the gaps in privacy compliance and scalability. Past studies have indicated that
sensor fusion enhances the accuracy of perception of AVs by synthesizing complementary data of LiDAR, radar, and
camera sensors. Simultaneously, the idea of federated learning has been becoming more and more popularized as the
alternative that would guarantee privacy in the environment of centralized data aggregation, allowing for training
models without sharing raw data between nodes or between organizations. However, most existing literature has either
experimented with FL on a simulated system or has applied it to single-modality data, which leaves a gap in the practical
implementation of cross-cloud and privacy-preserving multimodal learning on real-world autonomous configurations
of perception systems. To develop the contents of the experimental structure, Table 1 will provide a comparison of the
recent key studies that shall be utilized in mapping these developments in terms of datasets, architectures, results, and
limitations.

The current tendencies shifting towards the decentralized paradigms of learning in autonomous systems could be
traced in the studies described in Table 1. As the studies show [12, 13, 14], federated object detectors can maintain a
high level of accuracy at a relatively low communication cost, yet they can only work with single-modal sensors. Studies
also made improvements to the state of the art by proposing multimodal architectures (e.g., CNN-Transformer and CNN-
LSTM hybrids) to AV perception [15, 16]. However, they rely on centralized training pipelines, and that is why they
suspect that they do not comply with such privacy and data governance standards as GDPR and ISO/SAE 21434. Google
Research [16] demonstrated the scalability of federated learning (FL) using simulated autonomous vehicles; however,
its applicability to diverse real-world datasets has not been validated. According to these findings, the offered study will
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combine deep learning with the combination of multimodal sensor fusion with real data (KITTI, nuScenes, Waymo) and,
therefore, a privacy-friendly and high-performance cross-cloud architecture, which can be used throughout

collaborative learning of AV.

Table 1 Summary of Related Works on Federated Learning and Sensor Fusion in Autonomous Vehicles

Datasets Architecture / Approach | Key Findings Limitations

Used

KITTI Federated YOLOv5 with | Achieved 92.4% mAP with 25% reduced | Limited to a single
model averaging communication cost modality (camera)

nuScenes ResNet + FedAvg Improved cross-fleet model generalization | No  privacy-preserving

by 6% over local models encryption is integrated

Waymo Open | CNN-Transformer hybrid | Enhanced detection robustness by 8% in | Centralized training

Dataset for LiDAR-Camera fusion | adverse weather violates GDPR

KITTI + | CNN-LSTM hybrid with | Reduced model drift by 15% across clients | High latency in global

nuScenes weighted aggregation synchronization

Simulated AV | TensorFlow Federated + | Demonstrated scalability = with 50 | Lacks real-world dataset

datasets Secure Aggregation simulated nodes validation

General data | Analytical study on 6G | Provided comprehensive insights on low- | Not experimentally

model networks for VR/AR and | latency, high-throughput communication | validated on real AV
AV systems for AVs with VR/AR integration networks

3. System Architecture

The proposed FDL privacy-aware sensor fusion framework would allow the autonomous vehicle (AV) nodes to
collaboratively learn a shared perception model on the cloud infrastructure without having to reveal the original sensor
data. All of the AV clients operating in different environments with camera, LiDAR, and radar sensors, as depicted in
Figure 1, undergo local preprocessing, including temporal synchronization, normalization, and feature encoding, before
training a hybrid CNN-LSTM model. Every client will simply transmit encrypted updates of models to ensure privacy.
They apply secure aggregation protocols (e.g., the Bonawatz et al. scheme) in the sense that the Federated Learning
Server on the cloud can aggregate updates without knowledge of the contribution to it. The whole communication
between the clients and the server is encrypted using TLS, and optional differential privacy noise (with graded e/ d
parameters) may be added to the gradients to minimise information leakage further. It is the FedAvg algorithm that
implements the calculation of the global model on the server and subsequently transfers the model to the clients, and
goes on refining it in their respective locations until the desired level of accuracy is achieved. According to this design,
information that is sensitive, such as the correct vehicle routes or company environmental trends, does not leave the
local machine. The architecture allows knowledge transfer of distributed fleets, data confidentiality, safe global
aggregation, model performance maintenance, and efficient communication improvement. It hence offers a privacy-
conscious and scaled approach to real-time multi-sensor autonomous perception issues.
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Figure 1 Federated deep learning architecture for privacy-preserving sensor fusion in autonomous vehicles

3.1. System Architecture Overview

All AV nodes are fully contained clients (i.e., do local sensor data preprocessing and model training). Examples of
preprocessing steps include synchronizing sensor data streams over time, normalizing input values, and encoding
features for processing by CNN-LSTM architectures. Encoded model updates are sent to the cloud federated server after
local training, and weighted averaging of model parameters is performed by the federated server. The unified image of
the globe is also redistributed to clients to reuse the training again. This operation is a cycle operation that is applied in
determining the convergence of a high-performance global model and in the elimination of raw data transfers. Table 2
illustrates the allocation of real-world data sets to the federated client nodes with the focus on the dissimilarity of sensor
modalities and data volumes.

Table 2 Dataset Distribution Across Federated Clients

Client Dataset Used Sensor Modalities Samples Data Volume
Node (Training/Validation) (GB)
Client A KITTI Camera + LiDAR 70,000 /10,000 15.2
Client B nuScenes LiDAR + Radar + | 80,000 /12,000 22.4
Camera
Client C Waymo Open | LiDAR + Camera 120,000 / 15,000 35.7
Dataset

3.2. Federated Deep Learning Pipeline

The federated pipeline uses a hybrid CNN-LSTM architecture to obtain spatial and temporal features from multimodal
AV sensor data. Convolutional layers provide high-level representations of the spatial features, and LSTM layers model
temporal dependencies suitable for keeping track of moving objects and predicting future trajectories. Each client trains
its local model for multiple epochs on the client dataset and shares the encrypted local model weights with the central
server. The server uses the FedAvg algorithm, aggregates the model updates, and provides a shared global model back
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to the clients for further training. The process continues iteratively until convergence occurs, as summarized in Table
3, which describes the architecture of the local hybrid CNN-LSTM model and the federated training algorithm.

Table 3 Model Configuration and Training Workflow

Component Process/Algorithm Description Output
Local Model CNN + LSTM Combines spatial and temporal features for | Feature embeddings
object detection

Preprocessing | Synchronization + | Aligns timestamps and scales multimodal | Normalized sensor
Normalization inputs data

Training Local Epochs (10-20) On-device optimization using Adam Updated model

weights

Aggregation Federated Averaging | Weighted average of all client models Global model
(FedAvg)

Privacy Encryption + Differential | Ensures no raw data exposure Secure aggregated
Privacy model

3.3. Datasets

For the experiment of the proposed architecture validation, three datasets were chosen that are publicly available in
real-time, each of which is a different federated client. Client A employs KITTI Vision Benchmark (camera + LiDAR),
which includes urban driving sequences with 3D object detection labels. Client B employs nuScenes (camera + LiDAR +
radar), which contains 1,000 annotated driving scenes from two cities: Boston and Singapore, with different types of
sensors. Client C employs the Waymo Open Dataset (camera + LiDAR), which is composed of high-resolution sensor
data for motion prediction tasks. Since the partitioning of the datasets is done across the clients, this is like a typical
scenario in federated deployment, where diverse fleets of autonomous vehicles work together and make a global model.
The datasets' details (sensor modalities and sources) are summarized in Table 4.

Table 4 Open-Source Datasets Used for Federated Training

Dataset Modality Description Size Source

KITTI Vision | Camera + LiDAR | Urban driving dataset with 3D object | 6 hours / 100k | KITTI

Benchmark detection labels frames

nuScenes LiDAR + Radar + | 1000 driving scenes from Boston & | 1.4M images, 390k | nuScenes
Camera Singapore with rich annotations LiDAR sweeps

Waymo Open | LiDAR + Camera | High-resolution AV sensor data for | 1.2M frames Waymo

Dataset motion prediction

4. Experimental Setup

The experimental framework has been simulated using publicly available datasets KITTI, nuScenes, and Waymo Open
Dataset to test the proposed FDL architecture for phased sensor fusion among autonomous vehicle (AV) clients while
preserving sensor data privacy. In this setup, the three datasets were distributed among three virtual clients (Client A,
B, and C), simulating a realistic multi-fleet operational environment where raw multimodal sensor data from different
sources (camera, LiDAR, radar) cannot be shared directly among clients. Each client independently preprocessed its
respective dataset through synchronization and time normalization and encoded the inputs into a feature tensor for
training a CNN-LSTM hybrid model locally on-device. The encrypted model updates were periodically sent to a cloud-
based federated server, where the FedAvg algorithm aggregated and updated the global model parameters. This
iterative process continued until the global model stored in the cloud converged. The experimental evaluation focused
on accuracy, trajectory prediction, and communication cost, with performance comparisons made against a centralized
baseline model, particularly in terms of training latency and unsynchronized sampling behavior.
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Figure 2 Experimental Setup for Federated Sensor Fusion

Post-setup, every participant did local training for 50 epochs per communication round, and the federated server was
doing the weighted averaging of the encrypted model parameters at the same time. The global model was being
improved continuously through several iterations until the convergence criteria were satisfied. This arrangement
allowed a realistic simulation of distributed, privacy-preserving federated learning in AV systems, where the accuracy,
temporal feature learning capabilities, and the network efficiency were tested across three datasets that represented

different real-world conditions.

The experimental evaluation focused on accuracy, trajectory prediction, and communication cost, with performance
comparisons made against a centralized baseline model, particularly in terms of training latency and unsynchronized

sampling behavior (see Table 5).

Table 5 Training Configuration and Model Performance Comparison

Parameter / Metric

Federated CNN-LSTM (Proposed)

Centralized Baseline (CNN-
LSTM)

Dataset KITTI, nuScenes, Waymo Combined (Centralized
Access)

Batch Size 32 32

Learning Rate 0.001 0.001

Optimizer Adam Adam

Number of Epochs 50 50

Hardware Used

3 x NVIDIA RTX 3090 (Client-Side) + 1 x Cloud
Server (A100)

Single NVIDIA A100 GPU

Model Convergence Time | 43 38
(Epochs)

Communication Cost | 12.4 —
(MB/round)

Trajectory Prediction | 92.8 91.3
Accuracy (%)

Training Latency (s/epoch) 68.7 52.4
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5. Results and Analysis

The experimental assessment of the recommended framework indicates its usefulness for privacy-preserving multi-
sensor perception in autonomous vehicles (AVs). The federated model is shown to provide a comparable level of
performance to a centralized model for all three datasets (KITTI, nuScenes, Waymo) in terms of data privacy and
communication costs. The evaluation incorporated a wide range of metrics such as mean Average Precision (mAP) for
3D object detection, trajectory prediction error (root mean squared error), training time, and communication overhead.
The following subsections provide a comprehensive evaluation accompanied by figures that illustrate the advantages
and disadvantages of federated setup in contrast with centralized learning.

5.1. Accuracy and Object Detection Performance

The federated model reached almost the same accuracy as the centralized one for all the datasets, and there were only
small differences caused by the clients’ non-IID data distribution. The mAP comparison for 3D object detection over
KITTIL nuScenes, and Waymo datasets is presented in Figure 3. The federated model averaged mAP at 92.8% and the
centralized baseline at 93.5% [12][13]. These findings show that such collaborative learning among the clients does not
negatively impact the detection performance to a great extent, even in diverse multi-sensor scenarios.

30 Object Detection Performance: Centralized vs, Federated Learning

N Cactraliped Bassice
B Federaied Mods

4

=

Mean Avarage Precision imaF) [%)]

s -

Drartasat

Figure 3 Comparison of 3D object detection accuracy (mAP)

5.2. Trajectory Prediction Accuracy

The Root Mean Square Error (RMSE) was used as the metric for measuring the error in trajectory prediction, and it was
applied to the predicted vehicle paths. The prediction performance for each dataset is shown in Figure 4. The federated
scheme displayed a slight rise in RMSE (0.45 m) as against the centralized baseline (0.42 m), which mirrors the effect
of non-1ID data and is still well within the tolerable limits for AV navigation safety [14]. Thus, it can be concluded that
the federated model is capable of effectively catching the temporal dependencies in the sensor data for the purpose of
motion prediction.
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Figure 4 Trajectory prediction error (RMSE) comparison between centralized and federated

5.3. Training Latency

To evaluate the efficiency of the system, training latency per communication round was recorded. The average latency
of federated training as compared to centralized setups is presented in Figure 5. Federated training suffered only
slightly more latency compared to centralized training, with an average of 68.7 seconds per epoch, totaling
approximately 0.95 hours over 50 epochs, versus 52.4 seconds per epoch (~0.73 hours) in the centralized setup. This
minor increase is due to encrypted weight communication and iterative aggregation [15].

Training Latency per Communication Round: Centralized vs. Federated
B Contraized Baseling

B

N Faderatad Modal

2
5.0
8
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.4
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Dataset
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Figure 5 Comparison of training latency per communication round for centralized and federated learning across
multiple AV datasets

5.4. Communication Overhead

One of the most important aspects that impacts federated systems is the communication overhead. Figure 6 shows the
total amount of data that is transmitted in each round of communication. The federated setup only transfers encrypted
model weights (~12.4 MB per round), which leads to a significant reduction of the bandwidth requirements while
maintaining the privacy of the data, unlike centralized training, which has the drawback of data aggregation. This is a
strong argument for the proposed framework to be used in practice within autonomous vehicle fleets that are
distributed across various cloud platforms [16].
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Figure 6 Communication overhead comparison between centralized and federated learning

The joint assessment of these outcomes verifies that federated deep learning permits AVs to jointly benefit from varied
multimodal datasets in a privacy-preserving manner, thus attaining performance levels similar to centralized models
with only slight compromises in latency and trajectory error. The figures not only offer a detailed picture of the
proposed framework's trade-off among accuracy, efficiency, and privacy but also provide information about the figures
in the background.

6. Discussion

The tests carried out revealed that the FDL framework, which was presented in the paper, brings about an effective
coexistence of model performance, privacy preservation, and computational efficiency in the case of sensor fusion of
the autonomous vehicle. The federated model has come very close to achieving centralized accuracy for 3D object
detection (mAP ~92.8%) and trajectory prediction (RMSE ~0.45 m), which means that learning together from different
datasets can be very beneficial to the whole of the driving environment in terms of the diversity of the driving
environments. Although slight performance reductions were observed compared to centralized training, these
represent acceptable trade-offs given the significant benefits in data privacy, regulatory compliance with frameworks
such as GDPR and ISO/SAE 21434, and alignment with real-world operational conditions. The analysis of training time
and communication overhead further supports the feasibility of federated learning in distributed AV systems. Frequent
weight updates slightly increase training duration, yet bandwidth demand is significantly reduced since encrypted
model parameters, rather than raw data, are transmitted. The CNN-LSTM hybrids that are part of the multi-sensor
architecture being used are what make feature extraction across spatial and temporal dimensions so strong, which is a
requirement in real-time perception and decision-making in autonomous vehicles. The results here point to the fact that
federated learning holds the potential of making cross-cloud collaboration possible between AV fleets and thus
providing scalable solutions that are privacy-compliant and at the same time not compromising on accuracy. On the
other hand, the problem of non-IID data distributions across clients is still challenging, as it sometimes leads to minor
model drift and thus requires careful tuning of the aggregation weights. The future research to come might experiment
with adaptive FedAvg methods, secure multi-party computation, and differential privacy optimization so as to improve
the current framework even more. Overall, the proposed approach demonstrates that privacy-preserving, multi-sensor
federated learning is both feasible and effective for real-world autonomous vehicle ecosystems, bridging the gap
between regulatory compliance and high-performance collaborative Al To further mitigate the effects of non-IID data
distribution and enhance model stability, future work may explore adaptive aggregation strategies such as FedProx,
which introduces a proximal term to reduce client drift, or employ adaptive weighting mechanisms that dynamically
adjust aggregation coefficients based on data heterogeneity and convergence behavior

7. Conclusion

In this paper, a privacy-preserving architecture is proposed for sensor fusion in self-driving vehicles. It is possible to
mutually train a model when the various fleets of AVs are different, without the need to reveal any raw data of the
sensors. The hybrid network that integrates CNN and LSTM allows the system to use the spatial and time attributes of
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multiple sensors (camera, LiDAR, and radar) in order to generate the output. The safety and efficiency of the global
model updates are guaranteed by the FedAvg-based aggregation.

The evaluation of the results of using the KITTI, nuScenes, and Waymo Open Dataset has shown that the federated model
obtained nearly the same accuracy as the centralized one in the situation involving 3D object recognition and trajectory
forecast. This has the consequence of a little reduction in the training time and error in the trajectory. Significant
communication cost reduction and full conformity to privacy controls that include GDPR and ISO/SAE 21434 are the
key merits of the technique, which makes the method highly applicable to actual AV ecosystems. The findings represent
federated learning as a highly potent framework capable of facilitating interaction between different AVs with diverse
technology stacks in the cloud and keeping local data secret, as well as ensuring a high model performance. The issues
of non-IID data distributions and heterogeneity in the multi-client case that include minor model drift can be addressed
with advanced aggregation methods and adaptive privacy-preserving algorithms. Therefore, the study puts federated
sensor fusion as a credible and scalable route to the future of privacy-preserving self-driving systems that accommodate
high-performance perception, as well as reflect strict data protection requirements.

In the deployment approach, the proposed FDL framework can be easily combined with cloud-based systems like
Amazon Web Services (AWS). A federated training could be organized with the help of AWS SageMaker, which facilitates
distributed training among a number of AV clients and provides secure communication channels. The tensors of
encrypted model checkpoints and sensors may be stored in Amazon S3 and are secured, with controlled access to the
versions required to make an iterative update. The general arrangement of the training and aggregation process can be
operated with the help of AWS Bedrock, which offers scaling Al workflow automation and monitoring features. To
achieve real-time inference and edge deployment, AWS IoT Greengrass can support the execution of the trained
federated models on in-vehicle compute nodes and support a localized decision-making process even in the case of
intermittent connectivity. This integration shows that the framework is prepared to start activities in intelligent
transportation and autonomous mobility infrastructures on a practical and production scale.
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