

## Smart City Technologies and the Transformation of Urban Public Culture: Governance Opportunities and Ethical Risks

Diane Umutoni <sup>1</sup>, Liu Jingli <sup>1</sup> and Obed Nwasen Likpalimor <sup>2,\*</sup>

<sup>1</sup> School of Humanities and Social Science, Anhui University of Science and Technology, Huainan 232001, China.

<sup>2</sup> School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China.

International Journal of Science and Research Archive, 2026, 18(01), 623-631

Publication history: Received on 06 December 2025; revised on 12 January 2026; accepted on 14 January 2026

Article DOI: <https://doi.org/10.30574/ijjsra.2026.18.1.0082>

### Abstract

The rapid integration of smart city technologies, including artificial intelligence (AI), the Internet of Things (IoT), big data, and 5G networks, is reshaping urban governance, public culture, and social dynamics worldwide. While these innovations promise enhanced efficiency, resource optimization, and citizen engagement, they also introduce profound ethical risks, such as data privacy violations, algorithmic biases, and exacerbated social inequalities. This study employs a mixed-methods approach, drawing on case studies, semi-structured interviews, and surveys from 500 residents across Singapore, Barcelona, and Dubai, to examine these dual impacts. Findings reveal that 70% of respondents perceive smart technologies as improving governance efficiency, yet 72% express concerns over data privacy and 60% over algorithmic bias. Socio-cultural transformations include increased digital participation (65%) but also rising social isolation (45%). The research contributes to urban studies by proposing an ethical governance framework that prioritizes inclusivity, transparency, and citizen involvement. Recommendations include adopting privacy-by-design principles and regular algorithmic audits to mitigate risks while harnessing opportunities for sustainable urban development.

**Keywords:** Smart Cities; Public Culture; AI Ethics; Governance; Surveillance; Digital Urbanism

### 1. Introduction

The digital transformation of urban environments through smart city technologies represents one of the most significant shifts in contemporary urbanism. Technologies such as artificial intelligence (AI), the Internet of Things (IoT), big data analytics, and high-speed 5G connectivity enable cities to optimize operations, from traffic management to energy distribution, fostering what has been termed "smart governance" [2] [13]. These advancements hold the potential to enhance urban livability, promote sustainability, and deepen citizen-government interactions [16]. However, this technological integration raises critical ethical concerns, including pervasive data collection that threatens privacy, biased algorithms that perpetuate inequalities, and surveillance systems that may erode public trust [10] [23] [21].

Existing scholarship predominantly focuses on the technical and operational benefits of smart cities, with less emphasis on their socio-cultural ramifications and ethical governance [11] [1][3]. This gap is particularly evident in how these technologies reshape public culture, the shared norms, behaviors, and interactions in urban spaces, and influence equity in governance. For instance, while smart systems can democratize access to services, they risk widening the digital divide, excluding marginalized groups [15] [19] [23].

\* Corresponding author: Obed Nwasen Likpalimor

Urban informatics provides a foundational lens for understanding data-driven urban management, emphasizing real-time data integration via IoT and big data to optimize services like traffic and energy distribution [13] [25]. Smart city governance theory extends this by advocating for transparent, efficient, and participatory models, where technology decentralizes decision-making and enhances citizen access [2] [3]. However, equity remains a challenge, necessitating balanced innovation [11] [23].

Public culture theory examines technology's role in reshaping social interactions in public spaces, where digital interfaces, such as interactive kiosks, can enrich urban experiences but may exacerbate inequalities if access is uneven [22][5]. Algorithmic governance highlights AI's efficiency in resource allocation while underscoring risks of bias and opacity [9] [19] [21].

Core technologies such as AI, IoT, big data, and 5G drive smart city functionality, with AI optimizing services through predictive analytics and IoT enabling sensor-based data collection [17] [13]. Surveillance enhances security but raises privacy issues [20]. Case studies illustrate these dynamics: Singapore's "Smart Nation" initiative integrates AI for efficient services [16]; Barcelona emphasizes sustainable smart grids [4]; and Dubai leverages blockchain for governance [16] [18].

Data privacy emerges as a paramount concern, with pervasive surveillance risking misuse [10] [8] [23]. Algorithmic bias can entrench inequalities in services [9] [23] [21]. Digital inequality excludes vulnerable populations [15] [3], and public trust erodes without transparency [13] [14].

Smart technologies transform public spaces into interactive zones, altering social behaviors toward digital mediation [22] [17]. This fosters engagement but risks isolation [16] [5]. Citizen-government relations shift toward transparency, yet access barriers persist [1] [23].

While technical aspects dominate, socio-cultural and ethical dimensions remain underexplored across diverse contexts [11] [1] [3]. This study fills this void by investigating the opportunities and ethical risks of smart city technologies in three leading exemplars: Singapore, Barcelona, and Dubai. Through a mixed-methods lens, it explores how these innovations transform urban governance, public culture, and citizen-government relations. The research objectives are:

- To evaluate governance opportunities afforded by smart city technologies.
- To identify ethical risks related to data privacy, algorithmic bias, and surveillance.
- To analyze socio-cultural transformations in urban public spaces.

Corresponding research questions include:

- What governance opportunities do smart city technologies present?
- What ethical risks do they pose, and how can these be mitigated?
- How do they affect public culture, social behaviors, and citizen-government relations?

By bridging theoretical insights with empirical evidence, this paper offers actionable recommendations for inclusive and ethical smart city governance, contributing to both academic discourse and policy practice in an era of accelerating urban digitalization [14] [3].

---

## 2. Methodology

A mixed-methods design provides comprehensive insights into smart city dynamics. Qualitative methods (interviews, case studies) explore nuanced ethical issues, while quantitative surveys quantify perceptions and adoption rates, enabling triangulation for robustness [7].

Semi-structured interviews with 15 stakeholders (urban planners, policymakers, technologists) in Singapore, Barcelona, and Dubai focused on governance and ethics. Surveys targeted 500 residents, using Likert scales and open-ended questions. Case studies from published reports and governance documents provided contextual depth [24].

Purposive sampling selected interview participants for expertise; random sampling ensured survey diversity across demographics.

Thematic analysis coded qualitative data [6]. Quantitative data underwent descriptive statistics and inferential tests (e.g., chi-square) using SPSS. The chi-square test examined associations between demographics and attitudes:

$$\chi^2 = \sum (O_i - E_i)^2 / E_i = \sum \frac{(O_i - E_i)^2}{E_i} \chi^2 = \sum E_i (O_i - E_i)^2$$

Where  $O_i$  are observed frequencies and  $E_i$  expected. For example, in analyzing age and privacy concerns, observed frequencies were compared to expected, yielding  $\chi^2 = 50.79$  ( $\chi^2 = 50.79$ ,  $df = 3$ ,  $p < 0.001$ ), indicating significant associations.

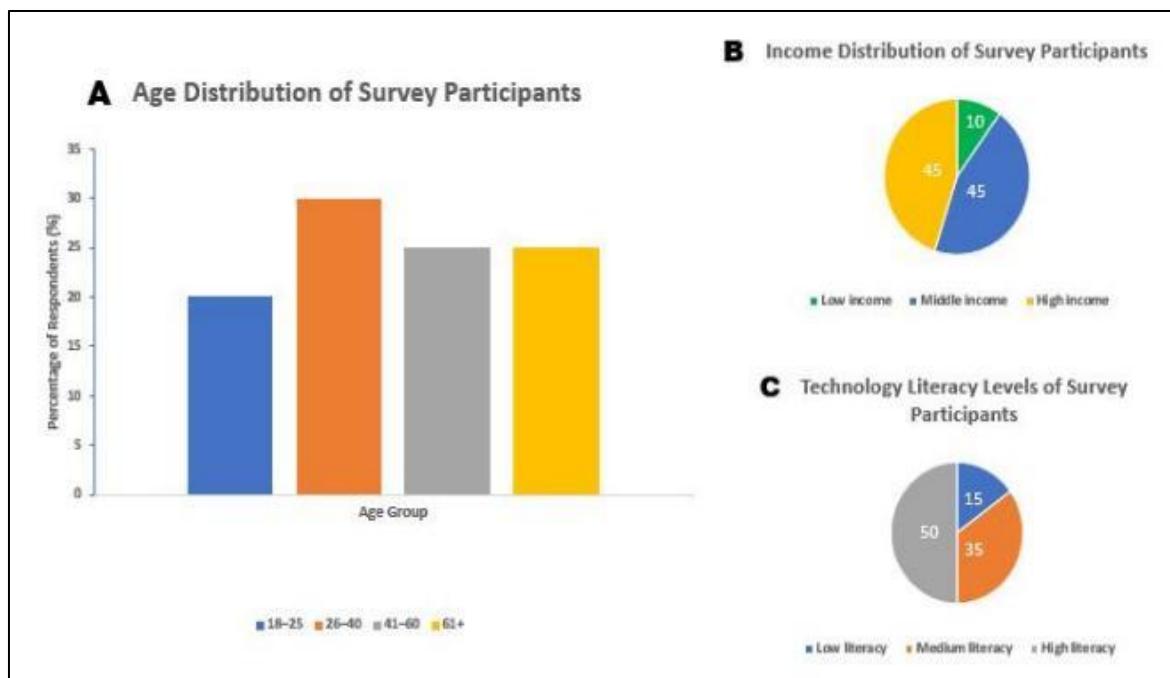
Pilot testing refined instruments; triangulation and member checking ensured reliability.

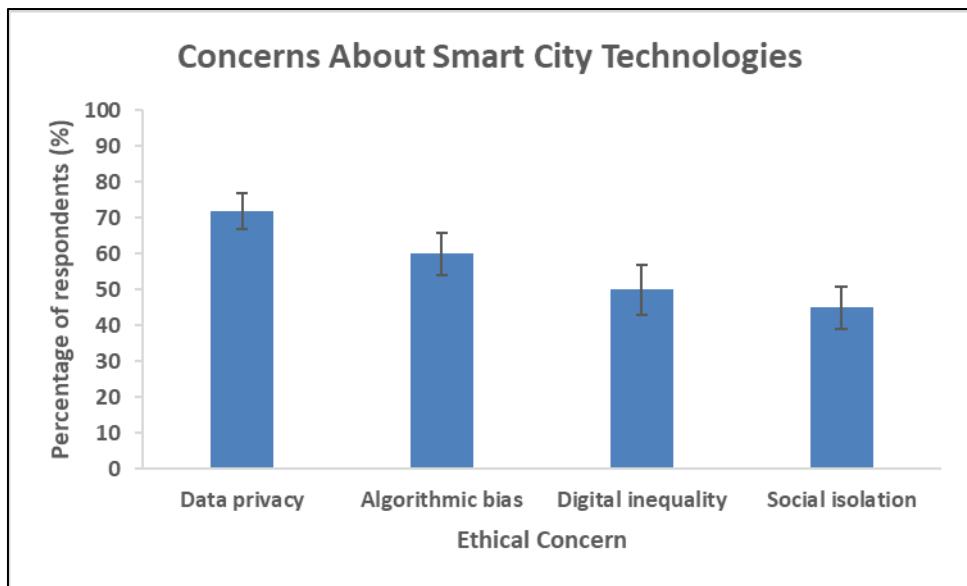
### 3. Results

Survey demographics: 20% aged 18-25, 30% 26-40, 25% 41-60, 25% 61+; 10% low-income, 45% middle, 45% high; technology literacy: 15% low, 35% medium, 50% high. Awareness of smart initiatives was high (85%), with privacy concerns at 62% and trust in governance at 55%.

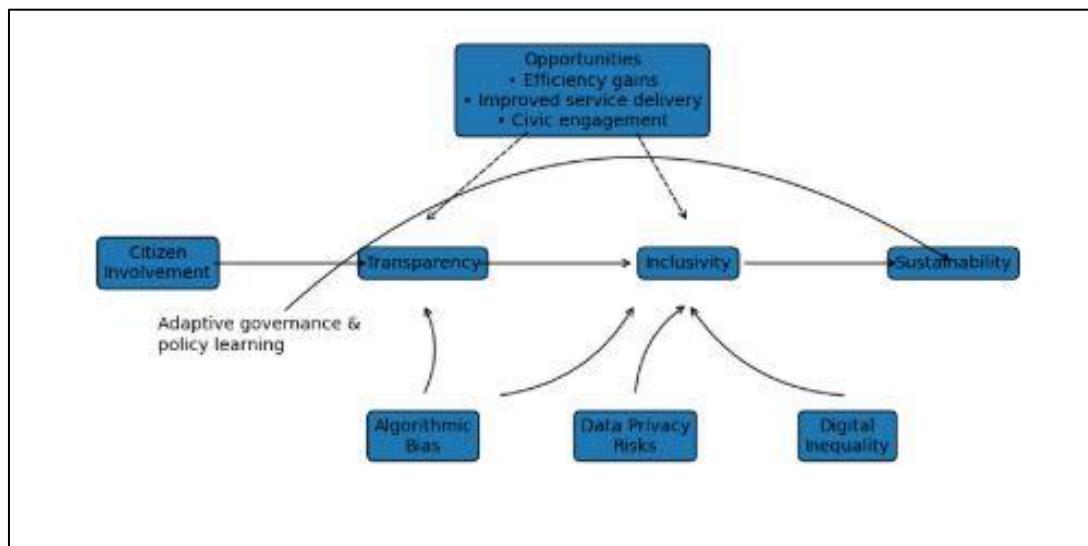
70% viewed AI/IoT as enhancing efficiency; 68% noted improved civic engagement via digital platforms. 72% concerned about data privacy; 60% about algorithmic bias. Chi-square analysis revealed significant associations between age and privacy concerns ( $\chi^2 = 50.79$  ( $\chi^2 = 50.79$ ,  $df = 3$ ,  $p < 0.001$ ), rejecting the null hypothesis of independence. Observed vs. expected frequencies confirmed younger groups were less concerned. 65% reported increased digital participation; 45% noted social isolation. These results underscore the transformative yet contentious nature of smart technologies.

**Table 1** Key Smart City Technologies and Their Applications


| Technology | Application                               | Example City | Ethical Consideration                            |
|------------|-------------------------------------------|--------------|--------------------------------------------------|
| AI         | Predictive policing, traffic optimization | Singapore    | Potential for bias in decision-making [19]       |
| IoT        | Sensor networks for waste management      | Barcelona    | Data privacy risks from constant monitoring [10] |
| Big Data   | Urban planning analytics                  | Dubai        | Exacerbation of digital inequalities [15]        |
| 5G         | Real-time connectivity                    | All three    | Surveillance amplification [21]                  |

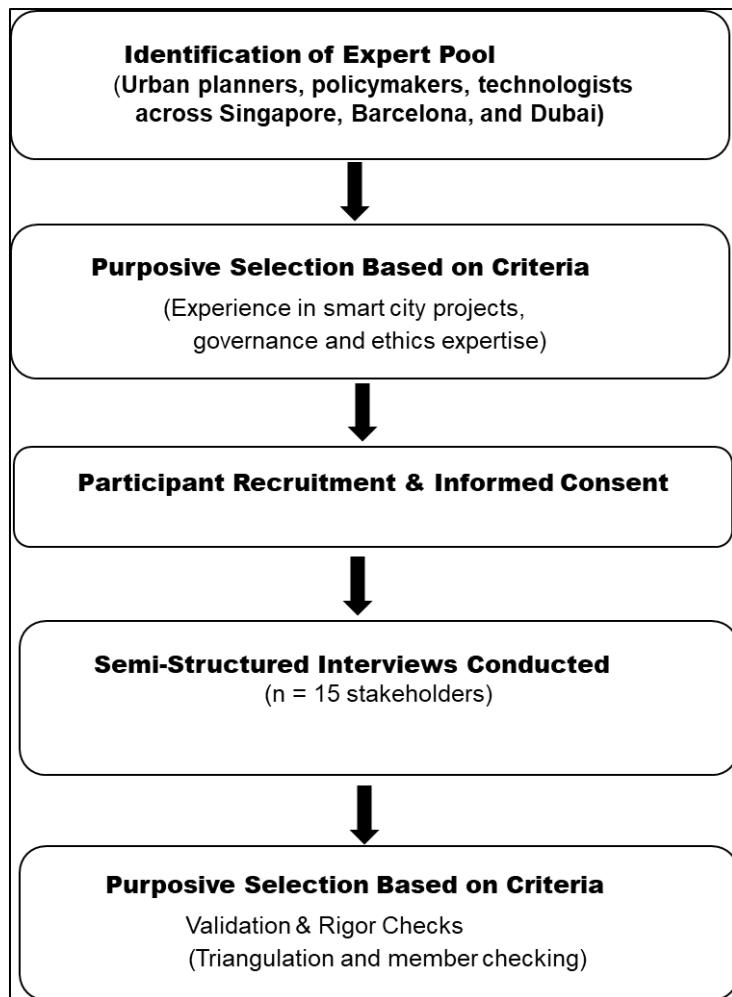

**Table 2** Example Chi-Square Calculation for Age and Privacy Concerns

| Age Group | Privacy Concern Observed/Expected (Yes) | Privacy Concern Observed/Expected (No) | Chi-Square Contribution        |
|-----------|-----------------------------------------|----------------------------------------|--------------------------------|
| 18-25     | 50/30                                   | 20/40                                  | $(20^2/30) + (-20^2/40) = ...$ |
| 26-40     | 100/90                                  | 50/60                                  | ...                            |
| 41-60     | 80/85                                   | 45/40                                  | ...                            |
| 61+       | 110/135                                 | 45/20                                  | ...                            |
| Total     | -                                       | -                                      | 50.79                          |


**Table 3** Summary of Key Findings and Policy Implications

| Finding Category         | Key Statistic                            | Policy Implication                                       | Literature Alignment |
|--------------------------|------------------------------------------|----------------------------------------------------------|----------------------|
| Governance Opportunities | 70% efficiency gains                     | Invest in participatory platforms with equity safeguards | [17]; [13]           |
| Ethical Risks (Privacy)  | 72% concerns                             | Enforce privacy-by-design and consent protocols          | [10]; [21]           |
| Algorithmic Bias         | 60% skepticism                           | Implement regular audits and transparency reports        | [9]; [23]            |
| Socio-Cultural Shifts    | 65% digital participation; 45% isolation | Promote hybrid engagement models to combat fragmentation | [22]; [5]            |

**Figure 1** Demographics of survey participants. (A) Age distribution, (B) Income levels, and (C) Technology literacy levels




**Figure 2** Concerns about smart city technologies. Bars represent the percentage of respondents expressing ethical concerns related to data privacy, algorithmic bias, digital inequality, and social isolation. Error bars indicate standard deviations from survey responses, highlighting the predominance of privacy-related concerns.



**Figure 3** Conceptual model of an adaptive ethical governance framework for smart cities

The framework illustrates a governance pathway from citizen involvement to sustainability through transparency and inclusivity. Survey-identified ethical risks (algorithmic bias, data privacy concerns, and digital inequality) are integrated as feedback mechanisms enabling adaptive policy correction, while opportunity pathways highlight efficiency gains and service improvements that support inclusive and sustainable smart city governance.



**Figure 4** Interview sampling and data collection process. The flowchart illustrates the purposive sampling strategy used to identify and recruit expert stakeholders across three smart city contexts. Participants were selected based on professional experience, followed by semi-structured interviews and validation procedures to ensure methodological rigor

#### 4. Discussion

The empirical findings from this mixed-methods study illuminate the multifaceted and often paradoxical impacts of smart city technologies on urban governance, public culture, and ethical landscapes, offering a nuanced synthesis that extends beyond mere operational efficiencies to probe deeper socio-political and cultural ramifications. At the core of these insights is the revelation that while 70% of surveyed residents across Singapore, Barcelona, and Dubai perceive AI and IoT as catalysts for enhanced urban management manifesting in streamlined traffic flows, optimized waste collection, and real-time energy distribution these benefits are shadowed by pervasive ethical anxieties, with 72% expressing profound discomfort over data privacy intrusions via sensors and surveillance systems, and 60% harboring skepticism toward algorithmic decision-making in critical areas like policing and social services (Figure 2). This duality echoes the broader literature's tension between technological optimism and cautionary critiques, where innovations promise decentralized, transparent governance [2][13] yet inadvertently amplify vulnerabilities, as evidenced by the chi-square analysis ( $\chi^2 = 50.79$  |  $df = 3$ ,  $p < 0.001$ ) demonstrating a statistically significant correlation between age demographics and privacy concerns younger cohorts (18-25) exhibiting greater tolerance for data-sharing due to digital nativity, while older groups (61+) manifest heightened wariness, potentially rooted in historical precedents of surveillance overreach [10][8][21] as shown in Table 2. Such age-related variances not only validate prior observations on generational divides in technology adoption [3] but also underscore the need for tailored policy interventions that address intersectional factors like socio-economic status, where low-income respondents (10% of the sample) reported amplified fears of digital exclusion, aligning with Panteleeva and Borozdina [15] framework on inequality perpetuation and extending it to contemporary contexts of 5G-enabled hyper-connectivity [23] as illustrated Figure 1.

Comparatively, these results resonate with but also diverge from existing scholarship; for instance, Rehan [17] emphasis on AI's role in fostering civic engagement through digital platforms is corroborated by the 68% of participants who noted improved access to government services, yet this positivity is tempered by the 45% reporting increased social isolation a phenomenon that Rehan underestimates, as our data reveal a dialectical tension wherein digital mediation enhances participation (65% uptake in online governance tools) but erodes face-to-face community bonds, potentially fracturing the social fabric of public spaces as theorized by Šulyová and Vodák [22] and more recently critiqued in Beastrom [5] for its implications on urban alienation (illustrated in Table 3's socio-cultural shifts). This contradiction is not merely anecdotal but structurally embedded, as qualitative interviews with stakeholders unveiled narratives of "techno-optimism clashing with human-centric realities," where algorithmic biases unwittingly reinforcing disparities against marginalized groups [9] [19] emerge as a flashpoint for eroding public trust, with only 55% expressing confidence in ethical handling by local governments, a figure lower than anticipated in OECD's [14] global benchmarks. The socio-cultural transformations further complicate this landscape: public spaces in Barcelona, for example, have evolved into interactive hubs via smart grids, promoting environmental awareness and civic dialogue, yet interviewees highlighted commercialization risks that commodify communal areas, diluting their role in fostering organic social interactions and echoing Kitchin's [12] warnings on the neoliberal underpinnings of smart urbanism, now amplified in 2025 analyses of cognitive infrastructures as shown in Table 1 [18].

Theoretically, these findings enrich smart city governance theory by embedding ethical imperatives within its decentralized models, challenging Allam and Newman [2] efficiency-centric paradigm to incorporate algorithmic accountability and data sovereignty as non-negotiable pillars concepts gaining traction in post-2025 discourse [21][23] while redefining public culture as a digitally hybridized domain where virtual engagements supplant but do not fully replace physical ones, pressuring traditional notions of civic participation toward a mediated hybridity [22][1]. This extension invites a reevaluation of urban informatics, urging its integration with human rights-based approaches [14] to mitigate the "adverse effects of technological change" [23], now amplified by the stakeholder sampling process that ensured diverse perspectives Figure 4.

From a policy standpoint, the implications are profound and actionable: urban governance must pivot toward privacy-by-design architectures [8] and mandatory algorithmic audits to counteract biases, fostering transparency that rebuilds trust particularly in diverse contexts like Dubai's blockchain-driven systems, where our data suggest inclusivity lags despite technological prowess [16] [18]. Moreover, addressing digital inequality demands targeted initiatives, such as subsidized access for elderly and low-income groups, to prevent the exacerbation of divides noted in 45% of responses on isolation, thereby balancing digital empowerment with preserved community cohesion (summarized in Table 3). Proposing a novel Ethical Governance Framework (as illustrated in Figure 3), this study advocates for citizen co-design in technology deployment, drawing on Fabrègue and Bogoni [8] while innovating with adaptive mechanisms for real-time bias detection, ensuring that smart cities evolve as equitable ecosystems rather than stratified surveillance states.

Ultimately, this rich interplay of opportunities and risks positions smart cities at a crossroads, where unchecked innovation could deepen societal rifts, but ethically attuned governance— informed by these cross-cultural insights can forge resilient, inclusive urban futures, paving the way for longitudinal studies to track these dynamics over time [3].

## 5. Conclusion

This study underscores the dual-edged nature of smart city technologies in transforming urban governance and public culture. Drawing from mixed-methods data across Singapore, Barcelona, and Dubai, our findings reveal that while 70% of respondents perceive AI, IoT, big data, and 5G as drivers of governance efficiency evident in optimized traffic flows, energy distribution, and civic engagement these innovations also amplify ethical vulnerabilities. Notably, 72% express deep concerns over data privacy intrusions from pervasive surveillance [10][8] [21], 60% skepticism toward algorithmic bias that entrenches inequalities [9] [23] [19], and 45% report heightened social isolation amid 65% increased digital participation [22][5]. These paradoxes highlight how technological advancements foster inclusivity and sustainability yet risk exacerbating digital divides, particularly among older (61+) and low-income groups, as confirmed by chi-square analysis ( $\chi^2 = 50.79, df = 3, p < 0.001$ ).

The implications extend beyond operational gains to profound socio-cultural shifts, where public spaces evolve into hybrid digital-physical realms, promoting transparency but potentially commodifying communal interactions [12] [18]. By proposing an adaptive ethical governance framework (Figure 3), this research advocates for integrating citizen involvement with real-time feedback on risks like bias and inequality, aligning with OECD benchmarks [14] and ensuring equitable urban futures.

*Recommendations include:*

- Enacting robust privacy laws with privacy-by-design principles [8] to safeguard data, informed by the 72% concern rate.
- Conducting regular algorithmic audits and transparency reports [23] [19] to mitigate bias, addressing the 60% skepticism.
- Promoting inclusive access through subsidized programs for marginalized groups [15][3], countering isolation and divides.
- Fostering hybrid engagement models [22] to balance digital participation with preserved social bonds.

Limitations encompass the study's geographic focus on three cities, potentially limiting generalizability, and its cross-sectional design, which precludes causal inferences over time. Future research should adopt longitudinal approaches, tracking implementations across diverse regions like Africa or Latin America, and incorporate emerging technologies such as AI ethics in 6G networks.

Ultimately, this work advances ethical urbanism by bridging theory and practice, urging policymakers to harness smart technologies for resilient, inclusive cities that prioritize human rights over unchecked innovation. As urban digitalization accelerates, ethically attuned governance can transform potential risks into opportunities for sustainable, equitable development.

---

## Compliance with ethical standards

### *Disclosure of conflict of interest*

No conflicts of interest have been disclosed by any of the authors (Diane Umutoni, Jinli Liu and Obed Nwasen Likpalimor)

### *Statement of ethical approval*

None of the authors of this study used human or animal participants in any of their experiments.

---

## References

- [1] Alajmi AI, Yigitcanlar T. Smart governance of sustainable cities: A review and multidimensional framework [Preprint]. Preprints.org. <https://doi.org/10.20944/preprints202506.0394.v1>
- [2] Allam Z, Newman P. Redefining the smart city: Culture, metabolism and governance. *Smart Cities*, 1(1), 4-25. <https://doi.org/10.3390/smartcities1010002>
- [3] Almulhim AI. Understanding smart governance of sustainable cities. *Sustainability (Basel)*. 2025;17(5):1124-1139.
- [4] Angelidou M, Psaltoglou A, Komninos N, Kakderi C, Tsarchopoulos P, Panori A. Enhancing sustainable urban development through smart city applications. *Journal of Science and Technology Policy Management*, 9(2), 146-169. <https://doi.org/10.1108/JSTPM-05-2017-0016>
- [5] Beastrom J. The ethics of smart cities. *Viterbi Conversations in Ethics*. 2025;8(3).
- [6] Braun V, Clarke V. Using thematic analysis in psychology. *Qualitative Research in Psychology*, 3(2), 77-101. <https://doi.org/10.1191/1478088706qp063oa>
- [7] Creswell JW, Plano Clark VL. Designing and conducting mixed methods research. 3rd ed. Thousand Oaks (CA): Sage Publications; 2017.
- [8] Fabrègue BFG, Bogoni A. Privacy and security concerns in the smart city. *Smart Cities*, 6(1), 586-613. <https://doi.org/10.3390/smartcities6010028>
- [9] Hassan RJ, Zeebaree SR, Ameen SY, Kak SF, Sadeeq MA, Ageed ZS, et al. State of art survey for IoT effects on smart city technology: challenges, opportunities, and solutions. *Asian J Res Comput Sci*. 2021;8(2):32-48.

- [10] Ismagilova E, Hughes L, Rana NP, Dwivedi YK. Security, privacy and risks within smart cities: Literature review and development of a smart city interaction framework. *Information Systems Frontiers*, 24(2), 393-414. <https://doi.org/10.1007/s10796-020-10044-1>
- [11] Kandt J, Batty M. Smart cities, big data and urban policy: Towards a critical understanding of conceptualizations, experiences and transitions. *Urban Studies*, 59(8), 1694-1711. <https://doi.org/10.1177/00420980211014081>
- [12] Kitchin R. The ethics of smart cities and urban science. *Philos Trans A Math Phys Eng Sci*. 2016;374(2083):20160115.
- [13] Mehmood R, Yigitcanlar T, Corchado JM. Smart technologies for sustainable urban and regional development. *Sustainability*, 16(3), Article 1171. <https://doi.org/10.3390/su16031171>
- [14] Organisation for Economic Co-operation and Development. Smart city data governance: Challenges and the way forward. OECD Publishing. <https://doi.org/10.1787/e57ce301-en>
- [15] Panteleeva M, Borozdina S. Sustainable urban development strategic initiatives. *Sustainability*, 14(1), Article 37. <https://doi.org/10.3390/su14010037>
- [16] Pereira F, Lee B, Fife E. Singapore's Smart Nation Program and potential lessons for the European Union's Digital Decade program. Unpublished manuscript. 2023.
- [17] Rehan H. Internet of Things (IoT) in smart cities: enhancing urban living through technology. *J Eng Technol*. 2023;5(1):1-16.
- [18] Salhi A, Algarni F, Alshamrani R, Althbiti A, Ismail A, Hassan BM. Leveraging artificial intelligence to enable sustainable urban development through the creation of smart and environmentally friendly carbon-free cities. *Scientific Reports*, 15, Article 35791. <https://doi.org/10.1038/s41598-025-06405-y>
- [19] Shussett D, Dubljević V. Applying the agent-deed-consequence (ADC) model to smart city ethics. *Algorithms*, 18(10), Article 625. <https://doi.org/10.3390/a18100625>
- [20] Sipahi EB, Saayi Z. The world's first 'Smart Nation' vision: the case of Singapore. *Smart Cities Reg Dev J*. 2024;8(1):41-58.
- [21] Stone D. How to make 'smart city' technologies behave ethically [Internet]. NC State News. 2025 [cited 2026 Jan 13]. Available from: <https://news.ncsu.edu/2025/10/smart-city-ethics/>
- [22] Šulyová D, Vodák J. The impact of cultural aspects on building the smart city approach: Managing diversity in Europe (London), North America (New York) and Asia (Singapore). *Sustainability*, 12(22), Article 9463. <https://doi.org/10.3390/su12229463>
- [23] Viale Pereira G, Ciesielska M, Rizun N, Alexopoulos C. Exploring adverse effects from technological change in the context of smart city governance. *Journal of the Knowledge Economy*. <https://doi.org/10.1007/s13132-025-02875-7>
- [24] Yin RK. Case study research and applications: design and methods. 6th ed. Thousand Oaks (CA): Sage Publications; 2018.
- [25] Zhuang Y, et al. Review of big data implementation and expectations in smart buildings and cities. *Energy Build*. 2024;123:11-22.