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Abstract 

Youth gambling has expanded rapidly in Nigeria alongside increased access to digital betting platforms, yet its long-
term social and behavioural dynamics remain poorly quantified. This study develops a deterministic compartmental 
model to examine the progression of youth gambling by incorporating digital exposure, escalation of betting behavior, 
financial debt accumulation, recovery with relapse, and regulatory enforcement. The model is shown to be 
mathematically well-defined, with positive and bounded solutions. A threshold quantity is derived to characterize 
gambling persistence, and its role in governing system dynamics is rigorously analyzed. Sensitivity analysis identifies 
digital exposure and regulatory enforcement as the most influential drivers of gambling prevalence. Numerical 
simulations with baseline parameters reveal the existence of a stable endemic gambling state under current conditions, 
marked by sustained levels of active and problem gambling and growing debt burden. The findings highlight the 
necessity of structural interventions targeting exposure control and enforcement to prevent long-term entrenchment 
of youth gambling in Nigeria. 

Keywords: Compartmental Modeling; Digital Betting Platforms; Financial Debt Accumulation; Gambling Persistence 
Threshold; Regulatory Enforcement; Youth Gambling 

1. Introduction 

In recent years, online sports betting has become a dominant and fast-growing segment of gambling activity in Nigeria, 
largely driven by increased internet penetration, mobile technology, and aggressive digital advertising targeting youths. 
While betting companies are often promoted as sources of entertainment and employment, mounting evidence 
indicates that excessive gambling among youths is associated with financial distress, academic underperformance, 
mental health challenges, and social instability [2]; [7]. In Nigeria, weak regulatory enforcement and easy access to 
online betting platforms have further intensified youth participation in gambling activities [12]. 

Mathematical modelling has increasingly been used to study the evolution of social behaviours, including gambling, by 
treating participation and addiction as dynamic processes within a population. Existing gambling models have largely 
focused on initiation and addiction dynamics, with limited consideration of digital exposure, relapse mechanisms, and 
financial debt, which are critical drivers of gambling persistence in developing economies [15]; [1]. In particular, the 
role of debt in reinforcing gambling behavior and undermining recovery efforts remains underexplored in the Nigerian 
context. 
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Most existing mathematical models of gambling behaviour (including [6]; [9]; Cognitive Behavioural Therapy-based 
models) share common features such as peer-influenced initiation, progression to problem gambling, and recovery and 
relapse dynamics. However, critical Nigeria-specific and modern drivers of gambling are not explicitly captured, such 
as digital/algorithmic exposure (mobile apps, social media ads, bonus notifications), debt accumulation and financial 
distress (which independently worsen addiction), regulatory and policy enforcement effects (advert bans, betting limits, 
age verification), economic shocks (unemployment, inflation spikes), and household spillover effects (family financial 
stress feeding back into relapse). 

To address these gaps, we develop an extended compartmental model for youth gambling in Nigeria, integrating digital 
exposure, debt accumulation, relapse, and policy enforcement in a unified framework and derive analytical thresholds 
and stability conditions to inform evidence-based policy decisions. 

2. Model Formulations and Assumptions 

2.1. The Gambling Model Formulation 

The model divides the youth population into six interacting compartments according to gambling status, financial debt, 
and recovery. Transitions between compartments capture key behavioural and socio-economic mechanisms driving 
youth gambling in Nigeria. 

Susceptible youths, S(t), are individuals who have not engaged in gambling. They enter the population at rate Λ, become 
digitally exposed through online advertising and peer influence at rate λS, and exit naturally at rate μS. Recovered youths 
who lose immunity return to susceptibility at rate ϕR. 

Digitally exposed youths, E(t), have encountered gambling content but have not yet placed bets. They arise from the 
susceptible class at rate λS and through relapse of recovered individuals at rate σR. Exposed youths progress to active 
gambling at rate αE and leave the class through natural exit at rate μE. 

Active gamblers, B(t), are youths who place bets but are not yet compulsive gamblers. They enter from the exposed class 
at rate αE, progress to problem gambling at rate δB, and recover through awareness or self-control at rate γB. Natural 
exit occurs at rate μB. 

Problem gamblers, P(t), exhibit addictive gambling behaviour. They enter from active gambling at rate δB, accumulate 
financial debt at rate ρP, and recover through treatment or intervention at rate κP. Natural exit occurs at rate μP. 

Indebted gamblers, D(t), represent individuals whose gambling has resulted in substantial financial debt. They arise 
from the problem gambling class at rate ρP, recover through counseling, debt relief, or policy-supported interventions 
at rate ηD, and exit naturally at rate μD. 

Recovered youths, R(t), consist of individuals who have temporarily stopped gambling. Recovery occurs from active 
gambling, problem gambling, and indebtedness at rates γB, κP, and ηD, respectively. Recovered youths may relapse into 
digital exposure at rate σR or return to susceptibility due to loss of immunity at rate ϕR. Natural exit occurs at rate μR. 

2.2. The Gambling Model Assumptions 

• The youth population is partitioned into mutually exclusive compartments according to gambling status, 
financial debt, and recovery. 

• Youths interact homogeneously, and gambling behaviour spreads through digital exposure and peer 
influence. 

• Digital advertising and online betting platforms are the primary drivers of gambling initiation. 
• Financial debt reinforces gambling persistence and accelerates progression to more severe gambling 

states. 
• Recovery from gambling is temporary, and relapse may occur due to continued digital exposure. 
• Policy enforcement reduces gambling initiation and progression but is imperfect. 
• Individuals exit each compartment through natural processes at a constant rate. 
• All model parameters are assumed constant over the study period. 
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Figure 1 Structural diagram illustrating transitions within the gambling model 

3. Mathematical Analysis of the Model 

3.1. Model equations for gambling behavior dynamics 

Based on the structural diagram of the gambling framework, the following system of equations is derived. 

SRS
dt

dS
 −+−= ,      (1) 

ERS
dt

dE
)(  +−+= ,      (2) 

BE
dt

dB
)(  ++−= ,      (3) 

PB
dt

dP
)(  ++−= ,      (4) 

DP
dt

dD
)(  ++= ,       (5) 

RDPB
dt

dR
)(  ++−++= .       (6) 

We define the force of gambling exposure as 

( ) 






 +
+−=

)(

)()(
1)(

tN

tPtB
Ct  , 

where C ∈ [0,1] represents the level of policy enforcement (advertisement restriction, age verification, self-exclusion). 
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Table 1 State variables of the gambling model 

State variables  Interpretation  

)(tS  Susceptible (non-gambling) youths. 

)(tE  Digitally exposed youths (advertisements, peer influence) 

)(tB  Active gamblers 

)(tP  Problem/compulsive gamblers 

)(tD  
Indebted gamblers   

)(tR  Recovered youths 

 

Table 2 Model parameters of the gambling model 

Model parameters  Interpretations  

  Recruitment rate into the youth population. 

  Natural exit rate (aging out, migration). 

  Digital advertisements exposure rate. 

  Peer-induced gambling influence. 

C  Policy enforcement strength ( .10 C ) 

  Progression rate from exposure to gambling. 

  Transition rate from gambling to problem gambling. 

  Recovery rate of gamblers. 

  Debt accumulation rate. 

k  Recovery rate of problem gamblers. 

  Recovery rate of indebted gamblers. 

  Loss of immunity (return to susceptibility). 

  Relapse rate due to digital exposure. 

  

3.2. Positivity of the Gambling System 

Theorem 1: 

The gambling model (1) to (6) is positive if solutions   6),(),(),(),(),(),( +RtRtDtPtBtEtS  generated from non-

negative initial states   6)0(),0(),0(),0(),0(),0( +RRDPBES remain non-negative throughout the time interval t 

> 0. 

Proof: The proof of compartment-wise positivity relies on the fact that solutions originating in the non-negative region 
cannot cross the coordinate hyperplanes. 

From equation (1);  SRS
dt

dS
 −+−= . At S = 0, 0+= R

dt

dS
  
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Hence, S(t) cannot cross into negative values. 

From equation (2), 

At E = 0,   0+= RS
dt

dE
 . Thus, 0)( tE for all 0t . 

From equation (3), 

At B = 0, 0= E
dt

dB
 . Therefore, )(tE remains non-negative. 

From equation (4), 

At P = 0,    0= B
dt

dP
 . Thus, 0)( tP . 

From equation (5), 

At D = 0,    0= P
dt

dD
 . Hence, 0)( tD . 

From equation (6), 

At R = 0,    0++= DPB
dt

dR
 . Thus, 0)( tR . 

Applying the comparison principle, each equation satisfies; inflow terms ≥ 0 and outflow terms proportional to the 

variable itself. Hence, the vector field pointsinward on the boundary of the non-negative orthant 
6

+ and solutions 
remain non-negative for all t ≥ 0. 

Hence, all state variables of the extended gambling model remain non-negative for all time, provided the initial 
conditions are non-negative. Therefore, the model is positively invariant and mathematically consistent and 

behaviourally admissible 0)(),(),(),(),(),( tRtDtPtBtEtS for all t ≥ 0. 

This positivity proof follows standard approaches used in compartmental modelling [17], [5]. 

3.3. The Invariant Region of the Gambling Model 

Theorem 2: 

Let ( ) ,)(:,,,,, 6







 

= +


tNRDPBES  where .RDPBESN +++++=  

Then, the region Ω is positively invariant under the flow of the extended gambling model. 

To ascertain the boundedness of the population, we examine the growth of the total population N(t). Summing all the 
equations (1) to (6) results to 

.
dt

dR

dt

dD

dt

dP

dt

dB

dt

dE

dt

dS

dt

dN
+++++=   (7) 

Substituting the model (1) – (6) equations and simplifying gives 
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 )( RDPBES
dt

dN
+++++−=  ,   (8) 

Hence, 

N
dt

dN
−=      (9) 

Equation (9) is linear and has the explicit solution 

teNtN 



−








 
−+


= )0()(    (10) 

From the solution (10) above, it follows that 






→
)(lim tN

t
.     (11) 

If 



)0(N  then 




)(tN  for all 0t . 

Thus, the total youth population remains bounded. 

From the positivity result, we already have: 0)(),(),(),(),(),( tRtDtPtBtEtS for all t ≥ 0. 

Combining this with the population bound: ,)(



tN we conclude that solutions starting in Ωnever leave the region 

Ω. 

Therefore, all trajectories of the extended gambling model that start in the biologically feasible region 

( )






 

=


)(,,,,, tNRDPBES  remain in Ω for all t ≥ 0. 

The proof follows standard arguments used in compartmental dynamical systems [17], [8]. 

3.4.  Gambling-Free Steady State of the Model 

The Gambling-free steady state of the model refers to the situation in which no individual is involved in gambling or its 
consequences. Hence, all gambling-related compartments are set to zero. That is, 

,)1( 






 +
+−=

N

PB
C  E0 = B0 = P0 = 0   (12) 

Recall,      .RDPBESN +++++=  

Substituting (12) into the force of exposure gives  

,)1(  C−=      (13) 

since B0= P0= 0. 
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From equation (1),    0000 SS  −−= .     (14) 

Substituting (13) into (14), we have, ( )  010 SC  +−−= , 

( ) C
S

−+


=

1
0 .    (15) 

00)( 0 ==++= DDP
dt

dD
 .    

.00)( 0 ==++−= RR
dt

dR
     

Thus, all equations are satisfied simultaneously. 

The gambling-free equilibrium is therefore 
( )

.0,0,0,0,
1

0 








−+


=

 C
E   (16) 

This means (16) S0 decreases as digital exposure ω increases. Stronger policy enforcement Cincreases the gambling-

free population when C→1 (full enforcement),



→0S , the maximal youth population. 

3.5.  Effective Reproduction Number of the Gambling System 

The effective reproduction number Re measures the expected number of new gambling entrants attributable to a single 
gambler in the presence of regulatory controls and policy measures. The formulation is obtained using next-generation 
matrix methodology [17]. Gambling transmission occurs through the following gambling compartments: 

TPBEX ),,(= , 

Decomposition into new-gambling and transition terms, we have, 

)()( XVXF
dt

dX
−= , F describes new gambler formation, and V represents transition and exit  

rates. Therefore, the new gambling terms



















 +
−

=

0

0

)(
)1(

N

PBS
C

F



 , 

The transition terms    

















−++

−++

+

=

BP

EB

E

V







)(

)(

)(

 

Jacobian matrices at the gambling-free equilibrium is given as,  



International Journal of Science and Research Archive, 2026, 18(01), 805-826 

812 

Jacobian of  F will be 















 −−

=

000

000

)1()1(0  CC

F ,      (17) 

Where, 1
0

0 =
N

S
. 

















++−

++−

+

=







0

0

00

V . 

 

By computing the inverse of the matrix V, we obtain; 

























+++++++++++

+++++

+

=−













1

))(())()((

0
1

))((

00
1

1V   (18) 

The resulting next-generation matrix, defined as K = FV-1 is carried out by multiplying (17) and (18), thus; 































+++++
−

=

000

000

))()((
)1( 1312 kkC

K






. 

Where    








++++
+

++
−=

))((

1
)1(12






Ck , 










++
−=




1
)1(13 Ck . 

Because K is upper triangular, its eigenvalues are: 








++
+

+++
−=








 1

))((
)1(1 C , λ2= 0, λ3= 0. 

Thus, 1)(  == KRe . 










++
+

+++
−=








 1

))((
)1( CRe .   (19) 
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The effective reproduction number captures the combined effects of digital exposure, peer influence, addiction 
escalation, financial debt, and policy enforcement on youth gambling dynamics. 

3.6.  Local stability of the Gambling-Free Steady State 

Theorem 3: 

The non-gambling equilibrium remains locally attracting for Re below unity and becomes unstable once Re exceeds one. 

Proof: 

The threshold quantity Re (19) plays a central role in determining the qualitative behaviour of the gambling-free 
equilibrium. When this threshold remains below unity, small perturbations involving gambling-related states decay 
over time, causing trajectories to return toward the non-gambling equilibrium. Conversely, once Re exceeds one, 
gambling-related compartments gain sufficient momentum to grow from arbitrarily small levels, rendering the 
gambling-free equilibrium unstable. This threshold behavior reflects the balance between gambling initiation 
mechanisms driven by exposure and peer influence and removal mechanisms such as recovery and policy enforcement, 
and it provides a clear criterion for assessing the effectiveness of intervention strategies. 

3.7. Global Stability of the Gambling-Free Steady State 

We will use a Lyapunov-based approach following [4]. We now define the Lyapunov function as   

PaBaEaPBEL 321),,( ++=      (20) 

where 0,, 321 aaa  are constants to be selected. 

pick, ,
1

1
 +

=a ,
))((

2




+++
=a .

))()((
3





+++++
=a  

Differentiating equation (24a), we have;  

dt

dP
a

dt

dB
a

dt

dE
a

dt

dL
321 ++= .     

 ( )
( )( )

( ).11 PBC
dt

dL
+

















++
+

+++
−








  

Therefore, 

( )( ).1 PBR
dt

dL
e +−         (21) 

The signs of (21) will be, if ,1eR then ,0
dt

dL
and equality holds if and only if .0=== PBE  

The largest invariant set where 0=
dt

dL
is the gambling-free equilibrium E0. 

Therefore, by LaSalle’s invariance principle, the gambling free equilibrium is globally asymptotically stable in the 
feasible region if Re< 1.   
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4. Endemic Equilibrium Analysis 

4.1. Endemic Gambling Equilibrium State of the Gambling System 

The endemic gambling equilibrium represents a persistent steady state where gambling activity remains present in the 

community. At this equilibrium, at least one gambling-related compartment is strictly positive. That is, ,0* E 0* B  

and 0* P . 

The endemic steady state is represented as ),,,,,( ******

1 RDPBESE = . 

At equilibrium, set all the derivative of equation (1) to (6) to zero and express compartments in terms of E*to give; 

 SRS  −+−=0 ,         (22) 

ERS )(0  +−+= ,        (23)  

  

BE )(0  ++−= ,        (24) 

PB )(0  ++−= ,        (25) 

DP )(0  ++= ,         (26) 

RDPB )(0  ++−++= .         (27) 

With force of gambling exposure as 

( ) 






 +
+−=

N

PB
C  1      (28) 

With     RDPBESN +++++=  

From equation (24); 

    
** EB





++
=       (29) 

From equation (25); 

    
**

)(
B

k
P





++
=       (30) 

Substitute equation (29) into (30), 

   

**

))((
EP





++++
=

     (31)

 

From equation (26); 
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)(

*
*





+
=

P
D       (32) 

Put (29) into (31) and simplifying to get, 

   

**

))()((
ED





+++++
=

    (33)

 

 

From equation (27); 





++

++
=

***
* DPB

R       (34) 

Substitute (29), (31) and (33) into equation (34) and simplifying further yields 










+++++
+

++++
+

++++
=

))()(())((

*
*















E
R  (35) 

From equation (22); 

***0 SRS  −+−=       

*

*
*



R
S

+
=       (36) 

Force of gambling exposure is givenas, 

( ) 






 +
+−=

*

**
* 1

N

PB
C       (37) 

Adding equation (29) and (31) gives,  










++
+

++
=+








1

*
** E

PB      (38) 

Put equation (37) into (38), 

( ) 





















++
+

++
+−=








 1

)(
1

*

*
*

N

E
C     (39) 

From equation (23),  

**** )( ERS  +=+       (40) 

Substituting equation (35), (36) and (39) respectively into equation (40) will result to a scalar equation in E*. 
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    )( ** EE =  

A non-trivial solution E*> 0 exists if and only if Re> 1. 

Thus, the endemic gambling equilibrium is ),,,,,( ******

1 RDPBESE = where each component is uniquely 

determined from E*. 

4.2. Global Stability of the Endemic Gambling Steady State 

Theorem 4: 

 If the effective reproduction number is greater than one, the endemic equilibrium of the gambling system exhibits 
global asymptotic stability in Ω. 

Proof: 

Let the gambling model be defined on the positively invariant region






 

= +


NRRDPBES :.),,,,,( 6
 , For 

Re> 1, the existence of an endemic gambling equilibrium is established and expressed as ),,,,,(1 RDPBESE = , E*> 

0, B*> 0, P*> 0. 

Let the lyapunov function be, 
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   (41) 

With 0 for all states Ω and 0=  if and only if the system is at E1. 
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Substituting equation (1) to (6) into (42) and simplifying using equilibrium identities will lead to, 

0
dt

d
with equality holding if and only if 

****** ,,,,, RRDDPPBBEESS ====== . For all  x> 0, 

,01 −− Inxx with equality if and only if x = 1. 

Applying LaSalle’s invariance principle. Let .0:








==
dt

d
xM


 The largest invariant subset of M is the singleton 

set  1E . Hence, ( ) .,,,,,lim 1ERDPBES
t

=
→

 

Therefore, the endemic gambling equilibrium 1E is globally asymptotically stable in Ω whenever Re> 1. 
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5. Sensitivity Analysis and Numerical Simulations 

5.1. Sensitivity Assessment of the Effective Reproduction Number. 

Sensitivity analysis is used to establish which parameter mainly  influence the effective reproduction numberRe, which 
governs whether gambling behaviour persists or dies out in the population. The normalized forward sensitivity index 
is adopted because it provides a dimensionless and policy-relevant measure of impact [5]; [17]. Let ‘u’ depend on a 
parameter ‘p’. The normalized forward sensitivity index of ‘u’ with respect to ‘p’ is defined as  

u

p

p

up

u .



=  

This index quantifies the relative change in ‘u’ produced by a one-percent variation in ‘p’ [5]. Carrying out the sensitivity 
analysis on (19) using the parameters values on table 3 gives the sensitive indices of the respective parameters on table 
4 with Re = 1.458. 

Table 3  Parameter Values of the Effective Reproduction Number 

Parameters  Baseline Value  Source  

  0.62 [10]. 

C  0.35 [11]. 

  0.40 [3]; [10].  

  0.25 [13]. 

  0.15 [15]; [14]. 

  0.10 [14]; [1]. 

  0.30 [10]. 

  0.02 [10]; [16]. 


 

20 Assumed value. 

  0.10 Assumed value. 


 

0.05 Assumed value. 

  0.08 Assumed value. 

  0.12 Assumed value. 

 

Table 4 Result of Sensitivity Index on Parameter 

Parameters  Sensitivity index 

  +1.000 

C  -0.538 

  +0.048 

  +0.102 

  -0.214 

  -0.173 
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  +0.091 

  -0.067 

From table 4, the normalized forward sensitivity analysis reveals that the exposure rate (β) has the highest positive 
sensitivity, indicating that gambling persistence is most responsive to digital betting exposure. Policy enforcement (C) 
shows the strongest negative influence, confirming that regulatory interventions are highly effective in reducing 
gambling spread. Recovery-related parameters (γ, κ) also significantly suppress Re, while debt accumulation (ρ) 
contributes positively to gambling persistence. The numerical sensitivity graph plots showing the effect of each 
parameter on the effective reproduction number are shown in figure 2 to figure 9. Each plot shows how Re  changes 
when the parameter is varied from 0.5× to 1.5× its baseline value, with a dashed line at Re = 1 (elimination threshold), 

and a dotted vertical line at 1× baseline. Baseline value used in all plots is 458.1eR . 

5.2. Numerical Simulation of the Endemic Gambling Equilibrium. 

MATLAB software was used to run the endemic equilibrium numerical simulations of the extended youth gambling 
model using thebaseline parameters in table 3. The simulation produces a stable endemic trajectory (all compartments 
settle to positive steady levels), consistent with an endemic gambling equilibrium. Using the Re  expression (24) 
previously derived, the computed value is 1.458 making use of the corresponding parameter values in table 3. Endemic 
equilibrium from simulation (approximate steady state) are (S*, E*, B*, P*, D*, R*) ≈ (212.12, 130.24, 124.03,  73.82, 
158.13, 299.65). I approximated the endemic equilibrium by taking the solution at the final simulation time (t = 200), 
so that the endemic gambling burden (active + problem gamblers) is (B* + P*) ≈ 124.03 + 73.82 ≈ 197.85. The simulation 
graphs are shown in figure 10 to 13.  

 

Figure 2 Graphical effect of β on Re. 
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Figure 3 Graphical effect of C on Re. 

 

Figure 4 Graphical effect of α on Re. 

 

Figure 5 Graphical effect of δ on Re. 
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Figure 6 Graphical effect of γ on Re. 

 

Figure 7 Graphical effect of   on Re. 

 

 

Figure 8 Graphical effect of ρ on Re. 
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Figure 9 Graphical effect of µ on Re. 

 

Figure 10 Graph of the youth gambling of all the state variables. 

 

Figure 11 Graph of the endemic gambling burden B(t) + P(t). 
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Figure 12 Graph of the effect policy enforcement on endemic gambling burden. 

 

Figure 13 Graph of endemic vs youths gambling (B+P) elimination dynamics. 

6. Discussions  

6.1. Effect of β on Re (betting exposure/digital–peer influence) 

• Figure 2 shows: Re  increases almost linearly as β increases. 
• Reason: β appears as a multiplicative factor in Re, thus proportional change in β gives proportional change in 

Re . 
• Threshold implication: Reducing β can push Re toward 1 and below depending on how large the reduction is. 
• Policy meaning: This confirms that controlling digital marketing reach, promotions, and peer-driven betting 

influences is the most direct lever for reducing gambling persistence. 

6.2. Effect of C on Re (policy enforcement strength) 

• Figure 3 shows: Re decreases almost linearly as enforcement C increases. 
• Reason: Re is proportional to (1− C).  Stronger enforcement reduces the effective “contact” intensity. 
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• Threshold implication: Increasing C moves the system toward elimination (toward Re< 1). 
• Policy meaning: Strengthening Nigeria Lottery Regulatory Commission (NLRC) enforcement (ad restrictions, 

age verification, self-exclusion compliance and penalties) has a large impact. This plot visually supports the 
model claim that regulation is a high-payoff control strategy. 

6.3. Effect of α on Re (transition from exposure to betting) 

• Figure 4 shows: Re  increases with α but slowly and with diminishing returns (curve flattens). 

• Reason: α appears in the fraction




+
; as α becomes large, α + μ grows similarly, so the ratio saturates. 

• Threshold implication: Changing α alone is unlikely to drive Re  below 1 unless combined with other 
interventions. 

• Policy meaning: Education and behavior-change programs that delay first-time betting help, but their impact is 
less dominant than direct exposure control. 

6.4. Effect of δ on Re (escalation from betting to problem gambling) 

• Figure 5 shows: Re  decreases as δ increases (a downward nonlinear curve). This means that in  Re  expression, 

δ appears both positively inside 








++
+




1  and negatively through the term (δ + γ + μ) in the 

denominator. 

With the baseline values in table 3, the denominator effect dominates, so increasing δ shortens time in B enough that 
overall “transmission” drops. 

Interpretation caution: This means that, under this formulation, faster movement from B to P reduces the time  

spent in the main “spreading” class B. 

6.5. Effect of γ on Re (recovery from betting) 

• Figure 6 shows: Re  decreases strongly as γ increases (downward trend). 
• Reason: γ increases the removal rate from B via (δ + γ + μ), reducing the average time an individual remains an 

active bettor. 
• Threshold implication: Increasing recovery support can push Re toward 1, especially when combined with 

reductions in β. 
• Policy meaning: Awareness campaigns, counseling access, and early “brief interventions” for active bettors are 

highly effective. 

6.6. Effect of   on Re (recovery from problem gambling) 

• Figure 7 shows: Re  decreases as κ increases, but the slope is weaker compare to γ. 
• Reason: κ acts on the problem gambling compartment P through (κ + ρ + μ). It reduces persistence among P, 

which contributes indirectly to new exposure. 
• Policy meaning: Specialized treatment (rehabilitation, addiction therapy) matters, but it is usually more 

resource-intensive and affects a smaller group than γ-type early interventions. 

6.7. Effect of ρ on Re (debt accumulation) 

• Figure 8 shows: Re decreases with ρ (downward curve). Increasing ρ reduces the fraction, lowering Re , since ρ 

appears in (κ + ρ + μ) in the denominator of the term 




++
. 

• Interpretation caution: It affects the P-duration term but does not create extra “infectiousness” directly. 

6.8. Effect of µ on Re (natural exit rate) 

• Figure 9 shows: Re  decreases gently as μ increases. 



International Journal of Science and Research Archive, 2026, 18(01), 805-826 

824 

• Reason: μ increases departure from all key states and appears in multiple denominators, shortening average 
time in exposed/gambling states. 

• Policy meaning: It confirms the model’s internal consistency. Faster exit reduces persistence. 

6.9. Explanation of the Endemic Equilibrium Simulation Graph (figure 10 to 13) 

The endemic equilibrium simulation graph illustrates the long-term dynamics of youth gambling behaviour under 
baseline parameter values. Starting from mixed initial conditions, all state variables evolve over time and converge to 
constant positive levels, confirming the existence of a stable endemic gambling equilibrium. 

In the early phase of the simulation, the susceptible population declines rapidly as digitally exposed individuals 
transition into gambling due to high exposure intensity and peer influence. This is accompanied by a corresponding rise 
in the exposed and active gambling compartments. As time progresses, active gamblers increasingly transition into 
problem gambling and debt accumulation, leading to sustained growth in the problem gambling and indebted classes. 

The recovery compartment initially increases due to behavioural change and intervention, but stabilizes at a positive 
level rather than eliminating gambling entirely. This reflects the effect of relapse driven by continued digital exposure 
and imperfect policy enforcement. Consequently, recovery alone is insufficient to drive gambling elimination when the 
effective reproduction number exceeds unity. 

The combined gambling burden, represented by the sum of active and problem gamblers, approaches a steady value 
over time. This convergence demonstrates that gambling persists at a stable endemic level rather than exhibiting 
unbounded growth or extinction. The absence of oscillations indicates that the system settles into a stable equilibrium 
rather than cyclical behaviour. 

Overall, the simulation confirms the analytical results: when the effective reproduction number is greater than one, 
youth gambling persists in the population despite recovery mechanisms. The endemic equilibrium reflects a balance 
between gambling initiation, escalation, recovery, relapse, and policy enforcement, highlighting the need for structural 
interventions that reduce exposure and strengthen regulatory control to shift the system toward elimination. 

7. Conclusion 

This study developed and analyzed a novel mathematical model to examine youth gambling dynamics in Nigeria by 
explicitly incorporating digital exposure, gambling progression, financial debt accumulation, recovery with relapse, and 
policy enforcement mechanisms. The model was shown to be mathematically well-posed, with positive and bounded 
solutions, and to admit both gambling-free and endemic equilibria governed by a clearly defined threshold quantity. 
Analytical results demonstrated that the effective reproduction number serves as a decisive indicator of whether 
gambling behavior will fade out or persist within the youth population. 

Sensitivity analysis revealed that gambling persistence is most strongly driven by digital and peer-based exposure, 
while regulatory enforcement exerts a powerful suppressive effect. Recovery-related processes reduce gambling 
transmission but are insufficient on their own to eliminate gambling when exposure remains high. Numerical 
simulations calibrated with Nigeria-based parameter values confirmed the existence of a stable endemic gambling 
equilibrium under current conditions, characterized by sustained levels of active and problem gambling and significant 
accumulation of gambling-related debt. 

Overall, the model provides quantitative evidence that youth gambling in Nigeria is not merely an individual behavioral 
issue but a self-reinforcing social process sustained by digital access, weak enforcement, and economic vulnerability. 
Without structural intervention, the system naturally evolves toward persistent gambling prevalence rather than 
spontaneous elimination. 

7.1. Recommendations 

Regulatory enforcement of gambling laws should be strengthened, particularly in controlling digital advertising and 
enforcing age restrictions, as exposure is the primary driver of gambling persistence. Targeted youth education 
programs should focus on preventing initial gambling engagement rather than only addressing addiction at later stages. 
Accessible early-intervention and recovery services should be expanded to reduce progression into problem gambling. 
Finally, financial literacy and debt-management initiatives should be integrated into gambling harm reduction 
strategies to weaken the feedback between debt and continued gambling behaviour. 
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7.2. Future work 

Future studies may extend the present model by incorporating optimal control strategies to formally evaluate the cost-
effectiveness of regulatory enforcement, public awareness campaigns, and treatment interventions. Stochastic versions 
of the model could be developed to capture uncertainty in youth behavior and fluctuations in digital exposure. Further 
extensions may include age-structured or gender-specific dynamics to reflect heterogeneity in gambling behavior 
across subpopulations. Integrating real-time administrative data from regulatory agencies would improve parameter 
estimation and predictive accuracy. Finally, coupling the gambling model with economic or mental-health outcome 
models would allow a more comprehensive assessment of the long-term societal impact of youth gambling in Nigeria. 
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