

Business intelligence frameworks for predicting product adoption and reducing innovation failure risk

Precious Mkpouto Akpan ¹, Toluwalase Damilola Osanyingbemi ² and Adewunmi O Wale-Akinrinde ^{3,*}

¹ Department of Philosophy, Faculty of Arts, University of Lagos.

² School of Postgraduate Studies, National Open University of Nigeria, Abuja, Nigeria.

³ Cranfield School of Management, Bedford UK.

International Journal of Science and Research Archive, 2026, 18(02), 024-035

Publication history: Received on 19 December 2025; revised on 28 January 2026; accepted on 30 January 2026

Article DOI: <https://doi.org/10.30574/ijjsra.2026.18.2.0171>

Abstract

Innovation outcomes remain highly unpredictable, with global estimates showing that a significant proportion of new products fail to reach commercial viability. As markets become more dynamic and data-abundant, Business Intelligence (BI) has emerged as a critical capability for identifying adoption patterns and minimizing innovation failure risk. This paper provides a systematic review of BI frameworks that contribute to product adoption prediction across industries. Drawing on interdisciplinary research in information systems, marketing analytics, innovation management, and machine learning, the review synthesizes theoretical foundations, analytical techniques, and enterprise BI architectures that enhance foresight and strategic decision-making. The findings reveal that BI-enabled prediction models significantly improve early detection of adoption barriers, strengthen market-sensing capability, and enhance innovation performance through continuous learning loops. The paper concludes by highlighting current methodological gaps, proposing an integrated conceptual model, and offering directions for future research.

Keywords: Business Intelligence; Product Adoption Prediction; Innovation Failure Risk; Predictive Analytics; Market-Sensing Capability; Innovation Management

1. Introduction

Sustained organizational competitiveness increasingly depends on the ability to introduce successful innovations into the market. However, empirical evidence consistently shows that a large proportion of new products do not achieve meaningful commercial adoption [1]. Failure rates remain high across technology, consumer goods, healthcare, and service sectors, and this persistent challenge continues to restrict firms' capacity to capture value from research and development investments. [2,3]. These methods often lack the depth, speed, and objectivity required to anticipate real market behavior, which exposes organizations to substantial strategic blind spots during early innovation stages.

In recent years, firms have increasingly turned to Business Intelligence systems as a way to overcome these limitations. BI provides an integrated approach to collecting, organizing, analyzing, and interpreting multi-source data that originates from customer interactions, digital footprints, competitive signals, operational systems, and external market environments [4]. Contemporary BI platforms incorporate elements such as statistical modeling, machine learning algorithms, natural language processing, data visualization, and real-time monitoring. When these components work together, organizations gain a stronger ability to detect emerging patterns in customer needs, identify sentiment shifts, track competitor activities, and evaluate internal readiness for commercialization [5]. As a result, BI improves foresight and enhances the accuracy of predicting product adoption prior to costly market entry decisions.

* Corresponding author: Adewunmi O Wale-Akinrinde

The development of BI from a passive reporting function to an active strategic intelligence capability reflects broader changes in organizational analytics [6,7]. Earlier BI systems provided descriptive summaries of past events, but they were limited in their support for forward-looking analysis. Modern BI frameworks now support predictive and prescriptive functions that can identify potential adoption barriers, estimate market responsiveness, and recommend strategic interventions. These advances have created new opportunities for firms to minimize innovation failure risk by making more evidence-based decisions throughout the product development lifecycle.

Despite the rapid progress and increasing industry adoption of BI, academic literature on the subject remains widely dispersed across fields such as marketing analytics, information systems, innovation management, data science, and operations research [8,9]. Many studies examine BI tools in isolation, while others discuss adoption prediction or innovation failure without explicitly integrating BI as a unifying construct. This fragmentation limits the ability of scholars and practitioners to understand the full potential of BI as a framework that connects data infrastructure, analytical methods, organizational processes, and strategic decision-making.

This review aims to address this gap by synthesizing interdisciplinary research on BI frameworks and their application to predicting product adoption and reducing innovation failure risk. The objective is to provide a coherent understanding of the mechanisms through which BI enhances forecasting accuracy, supports market-sensing capabilities, and improves innovation governance. By integrating insights from multiple theoretical and methodological streams, the study establishes a foundation for developing more holistic BI-driven approaches that enable organizations to achieve better innovation outcomes.

2. Literature Review

2.1. Business Intelligence as an Evolving Strategic Capability

Early research on Business Intelligence positioned it as a set of tools for data aggregation, reporting, and managerial monitoring [10]. These early systems focused on descriptive summaries of internal operations and provided limited support for predictive or strategic tasks. As organizations accumulated larger volumes of structured and unstructured data, BI evolved into a broader decision-support ecosystem that integrates data warehousing, advanced analytics, visualization platforms, and automated decision engines [11].

Current literature highlights BI as a central component of strategic agility and digital transformation. Scholars emphasize that BI enables organizations to capture weak market signals, align resources with evolving customer needs, and navigate increasingly competitive environments [12]. The ability to merge real-time data with predictive analytics has strengthened BI's role in innovation processes by supporting early identification of market opportunities and potential product failures [13].

Recent studies also underscore the value of BI in promoting cross-functional collaboration. Integrated dashboards and enterprise-wide data environments encourage communication among marketing teams, product developers, financial analysts, and strategic leaders. Through this collaborative orientation, BI fosters a collective understanding of innovation dynamics and reduces information asymmetry within organizations [14,15].

2.2. Theories of Product Adoption and Their Relevance to BI Frameworks

The literature on product adoption is anchored in several foundational theories that continue to influence predictive frameworks. The Technology Acceptance Model identifies perceived usefulness and perceived ease of use as central determinants of adoption [16]. These constructs remain relevant in BI research because modern analytics systems aim to quantify such perceptions through behavioral data and sentiment extraction.

Diffusion of Innovation theory contributes another important perspective by describing how innovations spread across different adopter categories [17]. The theory highlights communication channels, social influence, and attributes such as relative advantage and compatibility. BI systems enhance the practical application of this theory by enabling the measurement of diffusion patterns through customer segmentation, network analysis, and temporal modeling [18].

More contemporary theoretical contributions focus on market-sensing theory, which emphasizes the importance of continuously gathering and interpreting market information. BI aligns closely with this perspective by providing tools that track real-time customer behavior, competitor activities, and environmental shifts [19]. Together, these theoretical foundations illustrate how BI can bridge conceptual models of adoption with data-driven insights, thereby producing more accurate predictive outcomes.

2.3. Analytical Techniques for Predicting Product Adoption

An extensive body of research examines the role of analytical techniques in forecasting product adoption. Machine learning has become particularly prominent due to its capacity to detect complex, nonlinear patterns in customer behavior and market data [20]. Scholars have assessed various supervised learning models, including logistic regression, support vector machines, decision trees, gradient boosting, and neural networks [21]. These models are frequently applied to customer purchase histories, digital engagement patterns, and demographic indicators to estimate adoption likelihood.

Unsupervised learning methods also contribute to deeper understanding of product adoption. Clustering algorithms help identify distinct consumer groups whose responsiveness to innovation varies significantly. Association rule mining reveals hidden relationships among product attributes and customer preferences. Such insights inform targeted marketing strategies and refined product features, thereby reducing adoption risk [22].

Natural language processing techniques represent another important development in adoption prediction. Studies show that sentiment analysis, topic extraction, and semantic modeling are powerful tools for interpreting unstructured text from social media, online reviews, and customer forums [23]. These insights offer early indicators of market receptiveness and potential customer hesitations long before a product is formally launched.

Simulation-based approaches appear in recent literature as well. Market simulations using agent-based modeling and system dynamics help organizations explore alternative scenarios related to customer behavior, competitive response, and environmental uncertainty [24]. These models are particularly useful in innovation-intensive industries where historical data may be limited.

2.4. Innovation Failure Risk and Market Uncertainty

The literature on innovation failure presents a wide range of factors associated with unsuccessful product launches. Researchers emphasize that poor alignment between customer expectations and product design remains the most common source of failure [25]. Additional factors include insufficient market readiness, inadequate competitive positioning, and weak organizational support during the commercialization phase.

BI frameworks contribute to the mitigation of these risks by improving visibility across the product lifecycle [26,27]. Studies report that BI enables firms to monitor adoption-related indicators more effectively, such as customer engagement during pilot testing, regional sentiment variations, and competitor pricing strategies [28]. Through continuous intelligence gathering, BI reduces the level of uncertainty associated with innovation decisions and helps firms adjust their strategies in a timely manner [29].

2.5. Enterprise BI Architectures and Innovation Decision-Making

Recent scholarship highlights the growing sophistication of enterprise BI architectures. Organizations are increasingly deploying cloud-based data lakes, integrated application interfaces, and cross-functional analytics platforms that support continuous data flows [30]. These architectures enable seamless integration of internal metrics with external market signals, which strengthens decision quality and improves communication across units involved in innovation activities.

Within these environments, decision-intelligence platforms have gained prominence. These platforms combine predictive analytics, prescriptive modeling, and automated workflows to help managers evaluate multiple innovation pathways. Research shows that such platforms improve innovation governance by providing structured insights into market viability, adoption probability, and financial risk [31].

Overall, the literature indicates that enterprise BI architectures contribute not only to prediction accuracy but also to organizational learning [32]. As new data enters the system, models can be recalibrated and managerial assumptions can be refined. This iterative learning process enhances long-term innovation capability.

2.6. Gaps and Emerging Perspectives in the Literature

Although existing literature demonstrates significant progress in understanding how BI supports innovation, several gaps remain. First, many studies focus on technical aspects of BI without fully integrating behavioral theories of adoption [33]. Second, there are limited cross-industry comparisons that explore how BI capabilities influence adoption outcomes in different contexts [34]. Third, ethical considerations related to data privacy and algorithmic transparency are increasingly important, yet they remain underexplored in BI research [35].

Emerging perspectives suggest the need for hybrid frameworks that combine behavioral insights with predictive analytics. There is also increasing research interest in adaptive BI systems that learn continuously from customer interactions and environmental changes. These directions indicate a shift toward more sophisticated, holistic BI approaches for innovation management.

3. Methodology

This study adopts a structured review methodology designed to synthesize and interpret scholarly contributions on Business Intelligence frameworks for predicting product adoption and reducing innovation failure risk. The methodological approach combines systematic search procedures, transparent inclusion and exclusion criteria, and thematic synthesis to ensure comprehensive coverage and analytical coherence.

3.1. Research Design

The review follows principles commonly used in systematic and integrative reviews within information systems, management, and innovation studies [36]. The design emphasizes breadth and depth by incorporating a wide range of empirical, conceptual, and methodological papers. This approach enables the development of a richer understanding of how BI frameworks are conceptualized, implemented, and evaluated across different research streams.

3.2. Data Sources and Search Strategy

The literature search was conducted across several academic databases that are widely recognized in management and information systems research [37]. These include Scopus, Web of Science, IEEE Xplore, ScienceDirect, and Google Scholar. The search covered publications from 2010 to 2024, which reflects the period during which modern BI systems and predictive analytics experienced substantial innovation and adoption [38].

A combination of primary and secondary keywords was used to capture relevant studies. Examples of primary keywords include "Business Intelligence," "product adoption," "innovation failure," and "predictive analytics." Secondary keywords such as "machine learning," "market sensing," "decision intelligence," "consumer behavior modeling," and "enterprise analytics architecture" were used to refine the search and identify relevant subdomains [39,40].

3.3. Inclusion and Exclusion Criteria

- Studies were included if they met at least one of the following criteria
- The study examined BI or analytics frameworks relevant to product adoption prediction.
- The study investigated innovation failure, market-sensing capabilities, or customer adoption processes supported by digital intelligence tools.
- The study presented empirical models, theoretical developments, or conceptual frameworks linking BI to adoption or innovation outcomes.
- The study was peer-reviewed and published in reputable academic journals or conferences.

Exclusion criteria were applied to eliminate studies that did not directly relate to BI or innovation, lacked methodological rigor, or focused exclusively on technical algorithms without relevance to strategic decision-making [41].

3.4. Screening and Selection Process

The screening process followed three stages. The first stage involved the removal of duplicate entries. The second stage consisted of title and abstract screening to determine relevance. The third stage involved full-text review to assess conceptual or empirical alignment with the review objective. Studies that met the criteria were coded and categorized into thematic domains for further analysis [42,43].

3.5. Analytical and Synthesis Procedures

A thematic synthesis approach was employed to interpret and integrate the selected literature. Thematic synthesis is appropriate for interdisciplinary topics because it enables researchers to identify recurring patterns, conceptual relationships, and methodological trends while also highlighting gaps and contradictions in existing research [44].

The synthesis proceeded through three main steps. First, descriptive coding was used to categorize studies according to themes such as BI architectures, analytical techniques, product adoption theories, and innovation risk management

[45]. Second, analytical coding helped identify deeper relationships among these themes. Third, integrative synthesis combined insights across themes to generate a consolidated understanding of how BI contributes to adoption prediction and innovation performance [46].

3.6. Reliability and Validity Considerations

To enhance the reliability of the review process, consistent coding procedures and standardized evaluation criteria were applied across all selected studies. Validity was strengthened by using multiple reputable academic databases and by ensuring that studies represented diverse industries, methodological designs, and theoretical perspectives [47]. Although publication bias may exist in favor of positive results or high-impact studies, efforts were made to include both supportive and critical findings related to BI effectiveness.

3.7. Limitations of the Review Method

While the structured approach contributes to robustness, the review has inherent limitations. The exclusion of non-English publications may restrict global representation. The reliance on specific databases may also omit relevant industry reports or unpublished academic work [48]. Moreover, the rapidly evolving nature of BI technologies means that recent innovations may not yet be represented in peer-reviewed literature. These limitations are acknowledged and considered in the interpretation of findings.

4. Results

The review reveals several interconnected themes that explain how Business Intelligence frameworks contribute to predicting product adoption and reducing innovation failure risk. These themes reflect the combined influence of technological advancements, organizational practices, and evolving market dynamics.

4.1. BI as a Catalyst for Enhanced Market-Sensing Capability

A prominent finding across the literature is that BI significantly strengthens an organization's ability to sense and interpret market conditions. Studies consistently highlight that BI facilitates early detection of customer needs, emerging preferences, and shifts in competitive positioning [49]. Through integrated data environments, firms can consolidate information from multiple channels, including sales transactions, website interactions, customer support logs, and social media activities [50].

This enhanced market-sensing capability provides organizations with a more reliable foundation for forecasting how potential customers might respond to an innovation. Rather than depending solely on traditional surveys or historical data, BI enables continuous observation of real-time behaviors. As a result, firms can estimate market readiness more accurately and adjust their development strategies before costly commitments are made [51].

4.2. Predictive Analytics as a Driver of Adoption Forecasting Accuracy

Another central finding concerns the role of predictive analytics in improving the precision of adoption forecasts. Modern organizations are increasingly using machine learning models to identify the variables that most strongly influence adoption outcomes [52]. These may include customer demographics, behavioral indicators, product characteristics, price sensitivity, or external environmental conditions.

Machine learning techniques provide predictive capabilities that exceed traditional statistical models by capturing nonlinear relationships and complex interactions within data [53]. Studies report that predictive analytics improves forecasting accuracy and reduces uncertainty related to demand estimation [54]. In many cases, predictive models outperform managerial intuition, particularly in markets characterized by rapid technological change.

Natural language processing also contributes to prediction accuracy by enabling firms to process and interpret unstructured text from customer reviews and online discussions. Sentiment analysis and topic modeling help organizations identify potential sources of resistance and enthusiasm among consumers [55]. These insights offer valuable signals that influence decisions regarding product positioning, feature prioritization, and communication strategies.

4.3. BI-Supported Early Identification of Innovation Risks

The literature indicates that BI adds substantial value during the early stages of innovation by allowing firms to identify risks that may hinder adoption [56]. Risk factors may include misalignment between customer expectations and

product functionality, insufficient product differentiation, unclear value propositions, or negative sentiment emerging during early trials.

By integrating diverse data sources, BI frameworks support the development of risk profiles that quantify the likelihood of failure prior to launch [57]. Predictive models can assign risk scores to various product concepts, market segments, or launch strategies. Firms can then refine their innovation portfolio, discontinue weak concepts, or introduce modifications to improve product-market fit.

Several studies note that BI-driven risk detection is particularly useful in digital and technology-intensive sectors, where customer expectations evolve quickly and product lifecycles are compressed [58]. In such contexts, waiting for post-launch signals can lead to substantial financial losses. BI allows firms to act proactively, which improves resource allocation and reduces exposure to unsuccessful innovations.

4.4. Integration of BI Into Strategic Decision-Making Structures

Findings also show that BI's effectiveness is influenced by how well it is embedded into organizational decision-making processes. Firms with strong data governance practices and cross-functional collaboration tend to leverage BI tools more effectively [59]. In these organizations, BI insights flow continuously across teams responsible for research and development, marketing, finance, and operations. This integration ensures that product development decisions are informed by a comprehensive view of customer behavior, market trends, and operational constraints.

The literature suggests that BI's impact is greatest when organizations adopt a culture of evidence-based decision-making. Leaders who prioritize data-driven insights promote a strategic environment in which predictive analytics becomes a routine component of innovation management [60]. This cultural alignment enhances the adoption of BI recommendations and increases the accuracy of strategic decisions.

4.5. Continuous Learning and Post-Launch Optimization Through BI

Another important finding is the role of BI in supporting continuous learning throughout the product lifecycle. After a product is introduced into the market, BI platforms enable firms to monitor customer engagement, usage patterns, satisfaction levels, and emerging issues [61]. These data streams allow organizations to refine product features, adjust marketing strategies, or improve customer experience in real time.

Post-launch BI insights also enhance future adoption predictions by enriching predictive models with more accurate and diverse datasets. Each product iteration improves the organization's collective intelligence and strengthens its capacity to reduce failure rates in subsequent innovations. Scholars emphasize that this learning cycle contributes to long-term innovation capability and fosters sustained competitive advantage [62,63].

4.6. Emerging Role of Enterprise BI Architectures in Innovation Governance

The review also highlights the growing significance of enterprise BI architectures in structuring innovation governance. Modern architectures incorporate cloud data lakes, real-time analytics engines, integrated dashboards, and decision-intelligence platforms that unify predictive and prescriptive analytics [64]. These systems support strategic innovation decisions by providing timely and actionable insights into market viability, customer readiness, and resource constraints.

Organizations with mature BI architectures are better positioned to manage complex innovation portfolios and respond to rapid market changes. The ability to integrate internal and external data sources results in more accurate assessments of competitive threats, regulatory developments, and evolving customer expectations [65]. These advantages contribute directly to reducing innovation failure risk and improving strategic agility.

5. Discussion

The findings of this review highlight the growing significance of Business Intelligence as a core strategic capability that shapes how organizations design, evaluate, and commercialize new products. Throughout the literature, BI emerges not only as a technological tool but also as an enabler of more informed and adaptive decision-making processes. The discussion below elaborates on the broader implications of these findings and situates them within established theoretical and managerial frameworks.

5.1. BI and the Transformation of Innovation Decision-Making

One of the most prominent insights from the review is the shift from intuition-driven innovation decisions to more evidence-based processes. Historically, early-stage innovation decisions relied heavily on expert judgment and limited qualitative feedback [66]. The integration of BI into organizational processes has altered this landscape by providing access to large-scale behavioral, transactional, and sentiment data [67]. This transformation aligns closely with theories of dynamic capabilities, which emphasize the importance of sensing, seizing, and transforming resources in response to market changes.

BI enhances the sensing dimension by offering real-time visibility into customer preferences, competitive trends, and emerging market shifts. This increased sensitivity to environmental signals allows organizations to identify product opportunities and adoption risks earlier than traditional methods permit. As a result, firms are better equipped to adjust their strategies before committing substantial resources, which improves innovation outcomes [68].

5.2. Alignment with Theoretical Models of Adoption

The integration of BI into innovation processes offers a practical extension of established theories of product adoption. The Technology Acceptance Model and the Diffusion of Innovation framework both highlight factors that influence adoption, such as perceived usefulness, communication channels, and relative advantage. BI contributes to operationalizing these theories by quantifying behavioral indicators that reflect customer perceptions and social influence [69].

For example, sentiment analysis offers measurable insights into perceived usefulness, while network analytics helps identify influential individuals who may accelerate or impede diffusion. By bridging conceptual theories with data-driven modeling, BI offers a more precise and adaptive understanding of adoption dynamics [70]. This synergy strengthens theoretical applicability and enhances predictive accuracy, particularly in environments where customer behavior changes rapidly.

5.3. BI as a Mechanism for Reducing Innovation Failure Risk

A central theme across the review is the ability of BI frameworks to reduce uncertainty during innovation processes. Innovation failure frequently results from inaccurate assumptions about customer needs or market readiness [71]. BI mitigates these risks by identifying early warning signals and enabling firms to recalibrate their strategies. This risk-mitigation function is particularly valuable in technology-intensive industries, where product lifecycles are short and customer expectations evolve continuously.

The predictive models within BI frameworks offer probabilistic forecasts of adoption likelihood. Although predictions are not infallible, they provide structured insights that support more rational decision-making [72]. Firms that rely solely on intuition or limited data experience higher exposure to strategic missteps. BI offers a structured way to evaluate innovation options, prioritize development resources, and discontinue products that show weak market potential.

5.4. Organizational and Cultural Factors Influencing BI Success

The literature also emphasizes that BI effectiveness depends heavily on organizational context [73]. A sophisticated BI system cannot deliver meaningful insights if organizational culture does not support evidence-based decision-making. Firms that encourage cross-functional collaboration and data-driven discourse are better positioned to leverage BI [74]. In contrast, organizations with rigid hierarchies or limited analytical literacy often struggle to integrate BI outputs into their decision processes.

These findings connect with knowledge management theories, which argue that the value of information systems is contingent upon how knowledge is shared, interpreted, and applied [75]. BI platforms facilitate knowledge integration, but human judgment remains essential. The most successful organizations combine technological capability with analytical skills, leadership support, and a culture that values continuous learning.

5.5. BI and the Creation of Continuous Learning Loops

Another important insight concerns BI's role in creating continuous learning loops within innovation processes. Innovation is rarely a linear activity [76]. Instead, it evolves through cycles of idea generation, evaluation, refinement, and launch. BI contributes to each stage by generating insights that are used to update assumptions, refine product features, and recalibrate predictive models [77].

Post-launch data plays a particularly significant role in strengthening organizational learning. BI systems allow firms to monitor customer usage patterns, satisfaction levels, and feedback in real time [78]. These insights not only support incremental improvements to existing products but also improve the forecasting models that inform future innovation efforts. This reinforces the view that BI is an evolving knowledge asset that grows more powerful over time.

5.6. Limitations and Ethical Considerations

Although the benefits of BI are well documented, the review also reveals several limitations. Data quality issues, such as incomplete records or inconsistent data formats, can undermine predictive accuracy [79]. Algorithmic models may also inherit biases present in historical data, which can misrepresent consumer needs or distort adoption forecasts. Moreover, reliance on predictive analytics raises questions related to transparency, accountability, and customer privacy. These concerns demand further exploration, especially as BI systems become increasingly integrated with artificial intelligence and automated decision-making tools.

5.7. Implications for Research and Practice

The discussion suggests several key implications. For researchers, there is an opportunity to develop integrated frameworks that combine behavioral theory with advanced predictive analytics. Existing research often examines these domains separately, which limits theoretical advancement [80]. For practitioners, the findings emphasize the importance of investing in BI infrastructure and analytical talent. Firms that develop strong BI capabilities gain a significant advantage in innovation management, particularly in competitive and uncertain markets.

Overall, the review demonstrates that BI represents far more than a technological enhancement [81,82]. It is a strategic enabler that reshapes how organizations interpret market conditions, make innovation decisions, and learn from customer interactions. The next section provides a conclusion that synthesizes these insights and outlines future research directions.

6. Conclusion

Business Intelligence has transitioned from a back-office reporting tool into a strategic capability that shapes innovation decisions. Through advanced analytics, integrated architectures, and real-time intelligence gathering, BI frameworks significantly improve organizational ability to predict product adoption and manage innovation failure risks.

Despite substantial advancements, challenges related to data quality, interpretability, and theoretical integration remain. Future research should explore hybrid BI-behavioral models, real-time adaptive analytics, and decision-intelligence platforms that unify prediction with prescriptive action. As digital ecosystems expand, BI will become even more central to innovation governance, enabling organizations to design products that align more closely with dynamic customer expectations and evolving market realities.

Compliance with ethical standards

Disclosure of conflict of interest

No conflict of interest to be disclosed.

References

- [1] Kock A, Gemünden HG, Salomo S, Schultz C. The mixed blessings of technological innovativeness for the commercial success of new products. *Journal of Product Innovation Management*. 2011 Nov;28(s1):28-43.
- [2] Tassey G. Policy issues for R&D investment in a knowledge-based economy. *The Journal of Technology Transfer*. 2004 Apr;29(2):153-85.
- [3] Quinn JB. Technology in services: Past myths and future challenges. *Technological Forecasting and Social Change*. 1988 Dec 1;34(4):327-50.
- [4] 고태훈. Multi-source, unstructured and external data analytics for manufacturing process (Doctoral dissertation, 서울대학교 대학원).
- [5] Day GS. The capabilities of market-driven organizations. *Journal of marketing*. 1994 Oct;58(4):37-52.

- [6] Olszak CM. Dynamic business intelligence and analytical capabilities in organizations. InProceedings of the e-skills for knowledge production and innovation conference 2014 Nov (pp. 289-303).
- [7] Božić K, Dimovski V. Business intelligence and analytics for value creation: The role of absorptive capacity. International journal of information management. 2019 Jun 1;46:93-103.
- [8] Liang TP, Liu YH. Research landscape of business intelligence and big data analytics: A bibliometrics study. Expert Systems with Applications. 2018 Nov 30;111:2-10.
- [9] Larson D, Chang V. A review and future direction of agile, business intelligence, analytics and data science. International Journal of Information Management. 2016 Oct 1;36(5):700-10.
- [10] Laursen GH, Thorlund J. Business analytics for managers: Taking business intelligence beyond reporting. John Wiley & Sons; 2016 Nov 7.
- [11] Khan A. Business Intelligence and Data Analysis in the Age of AI. Walter de Gruyter GmbH & Co KG; 2025 May 13.
- [12] Adewusi AO, Okoli UI, Adaga E, Olorunsogo T, Asuzu OF, Daraojimba DO. Business intelligence in the era of big data: a review of analytical tools and competitive advantage. Computer Science & IT Research Journal. 2024 Feb 18;5(2):415-31.
- [13] Adewusi AO, Okoli UI, Adaga E, Olorunsogo T, Asuzu OF, Daraojimba DO. Business intelligence in the era of big data: a review of analytical tools and competitive advantage. Computer Science & IT Research Journal. 2024 Feb 18;5(2):415-31.
- [14] Kissi PS. Examine the influence of collaborative business culture and data-driven analytic capability on business innovation: Moderation role of managerial capability. Business Information Review. 2024 Sep;41(3):110-23.
- [15] Ping TA, Chinn CV, Yin LY, Muthuveloo R. The impact of information technology capability, business intelligence use and collaboration capability on organizational performance among public listed companies in Malaysia. Global Business and Management Research. 2018;10(1):293-312.
- [16] Chen L, Aklikokou AK. Determinants of E-government adoption: testing the mediating effects of perceived usefulness and perceived ease of use. International Journal of Public Administration. 2020 Jul 26;43(10):850-65.
- [17] Chen L, Aklikokou AK. Determinants of E-government adoption: testing the mediating effects of perceived usefulness and perceived ease of use. International Journal of Public Administration. 2020 Jul 26;43(10):850-65.
- [18] Cörte-Real N, Ruivo P, Oliveira T. The diffusion stages of business intelligence & analytics (BI&A): A systematic mapping study. Procedia Technology. 2014 Jan 1;16:172-9.
- [19] Adewusi AO, Okoli UI, Adaga E, Olorunsogo T, Asuzu OF, Daraojimba DO. Business intelligence in the era of big data: a review of analytical tools and competitive advantage. Computer Science & IT Research Journal. 2024 Feb 18;5(2):415-31.
- [20] Van Chau D, He J. Machine learning innovations for proactive customer behavior prediction: A strategic tool for dynamic market adaptation.
- [21] Musa AB. Comparative study on classification performance between support vector machine and logistic regression. International Journal of Machine Learning and Cybernetics. 2013 Feb;4(1):13-24.
- [22] Abdullah MS, Hasan R. AI-driven insights for product marketing: Enhancing customer experience and refining market segmentation. American Journal of Interdisciplinary Studies. 2023 Dec 5;4(04):80-116.
- [23] Sinjanka Y, Ibrahim US, Malate F. Text analytics and natural language processing for business insights: A comprehensive review. International journal for research in applied science and engineering technology. 2023 Sep;11(9):1626-51.
- [24] Reyes C, Knight O, Stewart P. Agent-Based Simulation of Competitive Market Dynamics for Strategic Business Planning. Journal of Innovation in Governance and Business Practices. 2025 Jun 6;1(1):1-31.
- [25] literature on innovation failure presents a wide range of factors associated with unsuccessful product launches. Researchers emphasize that poor alignment between customer expectations and product design remains the most common source of failure
- [26] Zhang Y, Ren S, Liu Y, Sakao T, Huisingsh D. A framework for Big Data driven product lifecycle management. Journal of Cleaner Production. 2017 Aug 15;159:229-40.

- [27] Yiu LD, Yeung AC, Cheng TE. The impact of business intelligence systems on profitability and risks of firms. *International Journal of Production Research*. 2021 Jul 3;59(13):3951-74.
- [28] Kumar R. Machine learning and cognition in enterprises: Business intelligence transformed. Apress; 2017 Nov 13.
- [29] Adewusi AO, Okoli UI, Adaga E, Olorunsogo T, Asuzu OF, Daraojimba DO. Business intelligence in the era of big data: a review of analytical tools and competitive advantage. *Computer Science & IT Research Journal*. 2024 Feb 18;5(2):415-31.
- [30] Arul K. Data Engineering Challenges in Multi-cloud Environments: Strategies for Efficient Big Data Integration and Analytics. *International Journal of Scientific Research and Management (IJSRM)*. 2023;10(6).
- [31] Alex-Omiogbemi AA, Sule AK, Omowole BM, Owoade SJ. Conceptual framework for advancing regulatory compliance and risk management in emerging markets through digital innovation. *World J. Adv. Res. Rev.* 2024 Dec;24:1155-62.
- [32] Shuvo SA, Tabassum M, Tafannum N, Chadni S. Machine Learning in Business Intelligence: From Data Mining To Strategic Insights In MIS. *Review of Applied Science and Technology*. 2025 Jul 21;4(02):339-69.
- [33] Ahmad S, Miskon S, Alkanhal TA, Tlili I. Modeling of business intelligence systems using the potential determinants and theories with the lens of individual, technological, organizational, and environmental contexts-a systematic literature review. *Applied Sciences*. 2020 May 4;10(9):3208.
- [34] Tuomi OE. Cross-industry insights into data analytics maturity: a global exploration based on 67 companies' perspectives.
- [35] Tuomi OE. Cross-industry insights into data analytics maturity: a global exploration based on 67 companies' perspectives.
- [36] Cronin MA, George E. The why and how of the integrative review. *Organizational research methods*. 2023 Jan;26(1):168-92.
- [37] Okoli C, Schabram K. A guide to conducting a systematic literature review of information systems research.
- [38] Mgbame AC, Akpe OE, Abayomi AA, Ogbuefi E, Adeyelu OO. Sustainable process improvements through AI-assisted BI systems in service industries. *International Journal of Advanced Multidisciplinary Research and Studies*. 2024;4(6):2055-75.
- [39] Li N. Big data-driven enterprise management and market decision-making framework. *Service Oriented Computing and Applications*. 2025 May 14:1-2.
- [40] Rizky A, Puspita D, Widya L, Santoso B, Bin Z. E-Commerce Data Architecture and Security Models: Optimizing Analytics, Resource Allocation, and Decision-Making Efficiency.
- [41] Shafa H. Artificial intelligence-driven business intelligence models for enhancing decision-making in us enterprises. *ASRC Procedia: Global Perspectives in Science and Scholarship*. 2025 Apr 29;1(01):771-800.
- [42] Schreiber F, Cramer C. Towards a conceptual systematic review: proposing a methodological framework. *Educational Review*. 2024 Sep 18;76(6):1458-79.
- [43] Goldstein A, Venker E, Weng C. Evidence appraisal: a scoping review, conceptual framework, and research agenda. *Journal of the American Medical Informatics Association*. 2017 Nov 1;24(6):1192-203.
- [44] Zou PX, Sunindijo RY, Dainty AR. A mixed methods research design for bridging the gap between research and practice in construction safety. *Safety science*. 2014 Dec 1;70:316-26.
- [45] Stjepić AM, Pejić Bach M, Bosilj Vukšić V. Exploring risks in the adoption of business intelligence in SMEs using the TOE framework. *Journal of Risk and Financial Management*. 2021 Feb 2;14(2):58.
- [46] Solano MC, Cruz JC. Integrating analytics in enterprise systems: A systematic literature review of impacts and innovations. *Administrative Sciences*. 2024 Jun 30;14(7):138.
- [47] Chandler GN, Lyon DW. Issues of research design and construct measurement in entrepreneurship research: The past decade. *Entrepreneurship Theory and Practice*. 2001 Jul;25(4):101-13.
- [48] Bahji A, Acion L, Laslett AM, Adinoff B. Exclusion of the non-English-speaking world from the scientific literature: Recommendations for change for addiction journals and publishers. *Nordic Studies on Alcohol and Drugs*. 2023 Feb;40(1):6-13.

[49] Adewusi AO, Okoli UI, Adaga E, Olorunsogo T, Asuzu OF, Daraojimba DO. Business intelligence in the era of big data: a review of analytical tools and competitive advantage. *Computer Science & IT Research Journal*. 2024 Feb 18;5(2):415-31.

[50] Oh LB, Teo HH, Sambamurthy V. The effects of retail channel integration through the use of information technologies on firm performance. *Journal of operations management*. 2012 Jul 1;30(5):368-81.

[51] Olayinka OH. Big data integration and real-time analytics for enhancing operational efficiency and market responsiveness. *Int J Sci Res Arch*. 2021 Dec;4(1):280-96.

[52] Pap J, Mako C, Illessy M, Kis N, Mosavi A. Modeling organizational performance with machine learning. *Journal of Open Innovation: Technology, Market, and Complexity*. 2022 Sep 28;8(4):177.

[53] Ratner B. *Statistical and machine-learning data mining:: Techniques for better predictive modeling and analysis of big data*. Chapman and Hall/CRC; 2017 Jul 12.

[54] Seyedian M, Mafakheri F. Predictive big data analytics for supply chain demand forecasting: methods, applications, and research opportunities. *Journal of Big Data*. 2020 Jul 25;7(1):53.

[55] Westerlund M, Olaneye O, Rajahonka M, Leminen S. Topic modelling on e-petition data to understand service innovation resistance. In *ISPIM Conference Proceedings 2019* (pp. 1-13). The International Society for Professional Innovation Management (ISPIM).

[56] Stjepić AM, Pejić Bach M, Bosilj Vukšić V. Exploring risks in the adoption of business intelligence in SMEs using the TOE framework. *Journal of Risk and Financial Management*. 2021 Feb 2;14(2):58.

[57] Moss LT, Atre S. *Business intelligence roadmap: the complete project lifecycle for decision-support applications*. Addison-Wesley Professional; 2003 Feb 25.

[58] Appelqvist P. Matching customer demand, offering portfolio and operations system in technology-intensive industries.

[59] Balogun ED, Ogunsola KO, Ogunmokun AS. An Integrated Data Engineering and Business Analytics Framework for Cross-Functional Collaboration And Strategic Value Creation. *ResearchGate*, March. 2025.

[60] Gade KR. Data-driven decision making in a complex world. *Journal of computational innovation*. 2021 Feb 10;1(1).

[61] Gadiparthi S. Enhancing customer experience with business intelligence: Strategies, tools, and case studies. *International Journal of Management (IJM)*. 2024 Mar;15(2):108-16.

[62] Lin MJ, Chen CJ. Integration and knowledge sharing: transforming to long-term competitive advantage. *International Journal of Organizational Analysis*. 2008 Jul 4;16(1/2):83-108.

[63] Keya LW, Kinyua GM. Organizational learning as an antecedent of competitive advantage: evidence from review of literature. *Int. J. Educ. Res.* 2025;13:13-38.

[64] Akter M, Kudapa SP. A comparative analysis of artificial intelligence-integrated bi dashboards for real-time decision support in operations. *International Journal of Scientific Interdisciplinary Research*. 2024 Oct 17;5(2):158-91.

[65] Duncan WJ, Ginter PM, Swayne LE. Competitive advantage and internal organizational assessment. *Academy of Management Perspectives*. 1998 Aug 1;12(3):6-16.

[66] Støme LN, Moger T, Kidholm K, Kværner KJ. Early assessment of innovation in a healthcare setting. *International Journal of Technology Assessment in Health Care*. 2019 Jan;35(1):17-26.

[67] Chen H, Chiang RH, Storey VC. Business intelligence and analytics: From big data to big impact. *MIS quarterly*. 2012 Dec 1:1165-88.

[68] Sánchez A, Lago A, Ferràs X, Ribera J. Innovation management practices, strategic adaptation, and business results: evidence from the electronics industry. *Journal of technology management & innovation*. 2011 Jun;6(2):14-39.

[69] Jaklič J, Grublješić T, Popovič A. The role of compatibility in predicting business intelligence and analytics use intentions. *International Journal of Information Management*. 2018 Dec 1;43:305-18.

- [70] Mangal U, Mogha S, Malik S. Data-Driven Decision Making: Maximizing Insights Through Business Intelligence, Artificial Intelligence and Big Data Analytics. In 2024 International Conference on Advances in Computing Research on Science Engineering and Technology (ACROSET) 2024 Sep 27 (pp. 1-7). IEEE.
- [71] Chiesa V, Frattini F. Commercializing technological innovation: Learning from failures in high-tech markets. *Journal of Product Innovation Management*. 2011 Jul;28(4):437-54.
- [72] Julmi C. When rational decision-making becomes irrational: a critical assessment and re-conceptualization of intuition effectiveness. *Business Research*. 2019 Apr;12(1):291-314.
- [73] Elbashir MZ, Collier PA, Davern MJ. Measuring the effects of business intelligence systems: The relationship between business process and organizational performance. *International journal of accounting information systems*. 2008 Sep 1;9(3):135-53.
- [74] Balogun ED, Ogunsola KO, Ogunmokun AS. An Integrated Data Engineering and Business Analytics Framework for Cross-Functional Collaboration And Strategic Value Creation. ResearchGate, March. 2025.
- [75] Khalifa M, Yan Yu A, Ning Shen K. Knowledge management systems success: a contingency perspective. *Journal of Knowledge Management*. 2008 Feb 22;12(1):119-32.
- [76] Kline SJ. Innovation is not a linear process. *Research management*. 1985 Jul 1;28(4):36-45.
- [77] Nookala G. Improving Business Intelligence through Agile Data Modeling: A Case Study. *Journal of Computational Innovation*. 2022 Feb 10;2(1).
- [78] Famoti O, Omowole BM, Okiomah E, Muyiwa-Ajayi TP, Ezechi ON, Ewim CP, Omokhoa HE. Enhancing customer satisfaction in financial services through advanced BI techniques. *International Journal of Multidisciplinary Research and Growth Evaluation*. 2024 Nov;5(06):1558-66.
- [79] König R. Predictive techniques and methods for decision support in situations with poor data quality (Doctoral dissertation).
- [80] Baer J. Domain specificity and the limits of creativity theory. *The Journal of Creative Behavior*. 2012 Mar;46(1):16-29.
- [81] Chen H, Chiang RH, Storey VC. Business intelligence and analytics: From big data to big impact. *MIS quarterly*. 2012 Dec 1:1165-88.
- [82] Sun Z, Sun L, Strang K. Big data analytics services for enhancing business intelligence. *Journal of Computer Information Systems*. 2018 Apr 3;58(2):162-9.