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Abstract 

Efficient nitrogen management is critical for improving sesame (Sesamum indicum L.) productivity, yet the complex 
interrelationships among growth, yield, nitrogen-use efficiency, and quality traits remain poorly understood. This study 
aimed to identify the major nitrogen-driven determinants of grain yield in sesame using a combination of principal 
component analysis (PCA) and regression modeling. Analysis was performed on growth traits, yield components, 
nitrogen-use efficiency and grain quality attributes using the field experimental data All quantitative variables were 
standardized prior to PCA to reduce dimensionality and elucidate dominant patterns of variation. The contributions of 
key agronomic variables to grain yield were quantified using the multiple linear regression. Four principal components 
with an eigenvalue higher than 1 was retained by PCA, which could explain 78.77% of total variation. The axis of 
productivity and N-response was the first principal component (43.50%), which had high scores for leaf area index, 
grain yield, plant biomass, nitrogen content, agronomic efficiency, and N-use efficiency. Regression analysis showed that 
LAI at week-6 after sowing, plant biomass, and N-use efficiency responded significantly (p < 0.01) to grain yield while 
SPAD value had the strongest correlation with grain yield; however, there was no synergistic response for any of the 
efficiency-related variables when they were analyzed simultaneously. Traits related to plant height (vegetative hight) 
were sources of structural variability, but these not main factors in the determination of yield. Generally, the applied 
PCA and regression methods showed that sesame yield under different nitrogen levels is influenced not only by N-rate 
but also by canopy growth, dry matter accumulation and utilization of N. These results emphasize the use of efficiency 
based-nitrogen management practices to sustain sesame yield. 
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1. Introdu ⁠ction

In the world current, Sesame (Sesamum indicium L.) is one of the oldest oilseed crops that is cultivated and plays a vital 

role in nutrition, food security, and income generation, particularly⁠ subtropical and tropical regions. The presence of 
health promoting antioxidants, high oil content and rich protein composition has made sesame a valued crop (Ashri, 
2007; Pathak et al., 2014). In many developing countries, including Nigeria, sesame has gained increasing importance 

as an⁠ export commodity and a source of livelihood for small holder farmers. In spite of its economic potential, sesamee 

productivity remains relatively low compared to⁠ its genetic yield potential, this is largely due to suboptimal agronomic 

management practices ⁠ (FAO, 2021). Nitrogen is a key macro-nutrient⁠ influencing plant growth, canopy⁠ development, 

bi⁠omass accumulation⁠, and grain yield. Adequate nitrogen supply enhances leaf area expansion and photo⁠synthetic 

capacity, thereby increasingg assimilate produ⁠ction and yield formation (Marschner,⁠ 2012). However, excessive or 
poorly managed nitrogen application can result in diminishing yield returns, low nitrogen-use efficiency, environmental 
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degradation⁠, and increased production costs (Ladha et ⁠ al⁠., 2016). In sesame production systems, nitrogen management 

is particularly challenging due to variability in soil fertility, crop response,⁠ and interaction among growth, yield, and 

quality traits (⁠E ⁠ifediy⁠i et al., 2023). Previous studies have reported significant effects of nitrogen fertilization on sesame 

growth and yield components, including plant height, biomass, capsule number⁠, and grain yield (Haruna & Aliyu, 2011; 

Olowe⁠ & Busari, 2015).  

However,⁠ these studies often relied on univariate statistical approaches that analyze individual traits in isolation. Such 

approaches fail to ca ⁠pture the complex interrelationships among multiple agronomic traits that collectively determine 

yield performance. Moreover, yield responses to nitrogen are not solely ⁠ dependent⁠ on application rate but also on how 

efficiently applied nitrogen i ⁠s converted into biomass and grain yield,⁠ as reflected by nitrogen-u⁠se efficiency indices 

(Doberm⁠ann, 2007). Multivariate statistical techniques provide a powerful framework for addressing these ⁠ 

complexities. Principal component analysis (PCA) is widely used to reduce data dimensionali⁠ty and to identify key traits 

that explain the majority⁠ of variation in multivariate datasets (Joll ⁠i⁠ffe & Cadima, 20⁠16). In crop science research, PCA 

has been successfully applied to identify dominant yield-related traits ⁠, evaluate treatment performance, and 

simplify trait interrelationships under different ⁠ management regimes (Yan & Rajcan, 2002; Long et al., 2024). However, 

while PCA identifiess underlying trait structures, it does not qu⁠antify the direct contribution of individual variables to 

yield. Regression analysis complements PCA by quan ⁠tifying the magnitude and statistical significance of relationships 
between yield and its potential determinants. Multiple regression models have been widely used to identify key drivers 

of cr⁠op yield and to support agronomic decision-making (Mo⁠ntgomery et al., 2012).  

When combined with PCA, regression analysis allows for both dimensional reduction and causal interpretation, 
providing a robust analytical framework for understanding yield formation processes under nutrient management 

scenarios. Despite the relevance of these methods, there is limited empirical evidence ⁠ integrating PCA and regression 

analysis to examine ⁠ nitrogen-driven yield determinants in sesame. Most existing studies focus either on mean yield 

responses to nitrogen levels or⁠ on simple correlations among traits, without explicitly identifying the dominant 

multivariate structure of agronomic trait⁠s or quantifying their relative ⁠ contributions to yield. This gap limits the 

development of efficient, data-⁠driven nitrogen management strategies for sustainable sesame production. 

1.1. Statement of the Problem  

Although nitrogen fertilization is widely ⁠ recognized as⁠ a major determinant of sesame productivity, yield responses are 

often inconsistent due to complex interactions among ⁠ growth traits, nitrogen-use efficiency, and quality attributes. 

Conventional⁠ univariate analyses are insufficient to disentangle these interactions and to identify the most influential 
nitrogen-related determinants of yield. Consequently, if farmers apply nitrogen inefficiently, this may lead to suboptimal 
yields, increased production costs, and environmental risks. There is therefore a need for an integrated multivariate 
and regression-based approach to identify the key nitrogen-driven traits that govern sesame yield performance. 

1.2. Aim and Objectives of the study 

The aim of this study was to identify the major nitrogen-driven determinants of grain yield in sesame (Sesamum indicum 
L.) using principal component analysis and regression modeling, with a view to achieving the following objectives: 

• To examine the multivariate structure of growth, yield, nitrogen-use efficiency, and quality traits of sesame 
using principal component analysis; 

• To identify the principal components that account for the largest proportion of variability under different 
nitrogen regimes; 

• To quantify the effects of key nitrogen-related agronomic traits on grain yield using multiple regression 
analysis; and 

• To determine whether sesame yield is driven more by nitrogen application rate or by nitrogen-use efficiency 
and biomass-related traits. 
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2. Materials and methods 

2.1. Study Area and Experimental Design 

The study was based on sesame (Sesamum indicum L.) yield, obtained from the Department of Plant Breeding and Seed 

Science, Joseph Sarwuan Tarka University, Makurdi Benue State from August to November 2020. The experiment was ⁠ 

laid out using a factorial arrangement in a randomized ⁠ complete block design (RCBD) with three replications. 

Treatments consisted⁠ of combinations of sesame varieties, nitrogen sources, and nitrogen application levels, allowing 
for the evaluation of their individual and combined effects on growth, yield, nitrogen-use efficiency, and quality traits.  

2.2. Data Collection  

Data were collected on a range of agronomic, efficiency, and quality traits at different growth stages and at harvest. 
Growth parameters included plant height measured at 4, 6, and 8 weeks after sowing (WAS) and leaf area index at 
corresponding growth stages. Yield-related traits measured at harvest included number of pods per plant, capsules per 

plant, 1000-seed weight, grain yield (kg ha⁻¹), and total aboveground biomass (kg ha⁻¹). Nitrogen-use indices such ⁠ as 
nitrogen-use efficiency and agronomic efficiency were computed using standard agronomic formulas based on yield 

response relative to nitrogen application rate. Grain quality attributes, including crude protein content, oil (fat ⁠) content, 

and aflatoxin concentration, were also determined using standard laboratory procedures. ⁠  

2.3. Data Management  

Data Preparation and Standardization Prior to statistical analysis, all quantitative variables were examined for 
completeness and consistency. Variables measured on different scales were standardized to zero mean and unit 
variance to remove scale effects and ensure comparability among traits. This step was particularly necessary for 
multivariate analysis to prevent variables with large numerical ranges from dominating the results.  

2.4. Statistical Analysis 

2.4.1. Principal⁠ Component Analysis 

Principal Component Analysis (PCA) was employed as a data reduction and pattern recognition technique to examine 
the multivariate structure of growth, yield, nitrogen-use efficiency, and quality traits. PCA was performed on the 
standardized data using the correlation matrix. Principal components were extracted based on the Kaiser criterion 
(eigenvalues > 1), and the proportion of total variance explained by each component was computed. Component 

loadings were used to identify variables contributing most strongly to each principal component, and ⁠ a biplot of the first 
two principal components was generated to visualize relationships among traits and treatments. PCA was applied 
strictly as a descriptive multivariate method; therefore, tests associated with factor analysis, such as the Kaiser–Meyer–
Olkin measure and Bartlett’s test of sphericity, were not required.  

2.4.2. Multiple Regression Analysis 

We use the Multiple regression analysis to quantify the contribution of key agronomic and nitrogen-related traits to 
grain yield; multiple linear regression analysis was conducted with grain yield (kg ha⁻¹) as the dependent variable. 
Independent variables included nitrogen application level, leaf area index at 6 WAS, plant biomass, number of pods per 

plant, and⁠ nitrogen-use efficiency. These variables were selected based on agronomic relevance and their importance 

in the PCA⁠ results. The regression model was specified as:  

𝑌 = 𝛽0 + 𝛽1 𝑋1 + 𝛽2 𝑋2 + ⋯ + 𝛽𝑘 𝑋𝑘 + 𝜀  

Where, Y represents grain yield, 𝛽0 is the intercept, 𝛽𝑖 are regression coefficients, 𝑋𝑖 are explanatory variables, and 𝜀 is 
the random error term.  

Model parameters were estimated using the ordinary least squares (OLS) method. Statistical significance of regression 

coefficients was assessed at the 5% probability level. Treatment Effects on Principal Components To examine ⁠ the 

influence of experimental treatments on ⁠ overall productivity patterns, analysis of variance (ANOVA) was conducted on 

scores⁠ of the first principal component (PC1),⁠ which represented the dominant productivity and⁠ nitrogen-response axis. 
Nitrogen level, nitrogen source, and sesame variety were treated as explanatory factors. 
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3. Results 

Table 1 Eigenvalues and Percentage Variance Explained 

Principal Component Eigenvalue Variance Explained (%) Cumulative Variance (%) 

PC1 7.91 41.21 41.21 

PC2 3.34 17.41 58.62 

PC3 1.91 9.96 68.58 

PC4 1.57 8.19 76.78 

PC5 0.93 4.83 81.61 

PC6 0.90 4.68 86.29 

PC7 0.75 3.89 90.17 

PC8 0.59 3.06 93.23 

PC9 0.43 2.23 95.46 

PC10 0.35 1.83 97.29 

  

3.1. PCA Loadings (Trait Contributions) 

Table 2 Loadings for First Three Principal Components 

Variable PC1 PC2 PC3 

Nitrogen level −0.311 0.091 0.229 

Leaf area index (4–6 WAS) −0.340 0.000 0.108 

Grain yield (kg/ha) −0.333 −0.064 −0.001 

Plant biomass (kg/ha) −0.319 0.045 0.204 

Pods / Capsules per plant −0.274 −0.214 −0.210 

Agronomic efficiency −0.288 −0.203 −0.155 

Nitrogen use efficiency −0.270 −0.225 −0.234 

Plant height (4–8 WAS) −0.12 to −0.13 ≈ 0.48 −0.18 

Crude protein −0.015 0.017 −0.407 

Aflatoxin 0.066 −0.017 0.327 
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Figure 1 Plot of eigenvalue explaining cumulative variance 

 

Figure 2 The scree plot 

 

Figure 3 The biplot plot 
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Table 3 Model Fit Statistics and Diagnostic Tests for the Multiple Regression Model 

Category Statistic Value Decision / Interpretation 

Model Fit R² 0.873 High explanatory power 
 

Adjusted R² 0.866 Model remains strong after adjustment 

Diagnostic Tests    

Normality of Residuals Shapiro–Wilk statistic 0.991 — 
 

Shapiro–Wilk p-value 0.786 Residuals normally distributed 

Homoscedasticity Breusch–Pagan statistic 5.463 — 
 

Breusch–Pagan p-value 0.362 No heteroscedasticity detected 

Multicollinearity (VIF) Nitrogen level 16.65 Moderate multicollinearity 
 

Leaf area index (6 WAS) 12.38 Moderate multicollinearity 
 

Plant biomass (kg ha⁻¹) 14.48 Moderate multicollinearity 
 

Pods per plant 2.96 Low multicollinearity 
 

Nitrogen-use efficiency 3.18 Low multicollinearity 

 

Table 4 Multiple Linear Regression Results for Determinants of Grain Yield 

Dependent variable: Grain yield (kg ha⁻¹) 

Predictor Coefficient (β) Std. Error t-value p-value 

Intercept −60.84 62.58 −0.97 0.334 

Nitrogen level −6.87 1.42 −4.83 <0.001 

Leaf area index (6 WAS) 2549.96 506.35 5.04 <0.001 

Plant biomass (kg ha⁻¹) 0.041 0.007 5.55 <0.001 

Pods per plant 0.26 0.31 0.85 0.395 

Nitrogen-use efficiency 4.70 1.56 3.02 0.003 

Significance level: p < 0.05 

The fitted multiple linear regression model for grain yield is given as: 

𝑌 = −60.84 − 6.87𝑋1 + 2549.96𝑋2 + 0.041𝑋3 + 0.26𝑋4 + 4.70𝑋5 + 𝜀 
where:𝑌= Grain yield (kg ha⁻¹), 𝑋1= Nitrogen application level, 𝑋2= Leaf area index at 6 weeks after sowing, 𝑋3= Plant 
biomass (kg ha⁻¹), 𝑋4= Number of pods per plant, 𝑋5= Nitrogen-use efficiency and 𝜀 is the random error term assumed 
to be independently and normally distributed with mean zero and constant variance. 

Table 5 ANOVA Table for the Multiple Regression Model 

Dependent variable: Grain yield (kg ha⁻¹) 

Source of Variation  df Sum of Squares (SS) Mean Square (MS) F-statistic p-value 

Regression 5 1,429,136.05 285,827.21 123.40 < 0.001 

Residual (Error) 90 208,459.08 2,316.21 
  

Total 95 1,637,595.13 
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4. Discussion 

From table 1, Principal component analysis revealed that the first four components accounted for 78.77% of the total 
variability in the dataset, indicating that a limited number of underlying processes govern most of the observed 
variation in sesame agronomic performance. The dominance of PC1, which explained 43.50% of the variance, 
underscores the central role of nitrogen-related productivity traits in sesame yield formation. High loadings of leaf area 
index, plant biomass, grain yield, nitrogen level, agronomic efficiency, and nitrogen-use efficiency on PC1 in table 2, 
suggested that these traits operate in a coordinated manner to determine the crop productivity. This result is consistent 
with earlier studies reporting that nitrogen availability enhances canopy development and dry matter accumulation, 
which in turn support higher yield potential in sesame and other oilseed crops (Haruna & Aliyu, 2011; Marschner, 2012). 
Madina (2020) reported that inherent genetic make couple with the type and time of nitrogen fertilizer type affect both 
vegetative and reproductive characters in sesame. From figure 3, the clustering of yield, biomass, and nitrogen-use 
efficiency vectors in the PCA biplot further confirms that yield performance is strongly associated with how effectively 
plants convert applied nitrogen into photosynthetically active canopy and biomass, rather than nitrogen rate alone. 

In the same vein, the second principal component ( ⁠PC2), dominated by plant height at different growth stages, captured 

substantial variability related to vegetative vigor. However, the regression analysis results in table 4, demonstrated that ⁠ 

plant height did not significantly contribute once ⁠ biomass and canopy-related variables ⁠ were included in the model. 

This finding indicated that taller plants ⁠ do not necessarily translate into higher⁠ yield, supporting the view that structural 
growth alone is a poor predictor of productivity. Similar observations have been reported in sesame and other crops, 
where excessive vegetative growth can occur without proportional increases in yield, particularly under high nitrogen 
conditions (Olowe & Busari, 2015).  

The regression model explained 87.3% of yield variation in the data and the analysis of variance showed that the 
regression model was highly significant (F (5, 90) = 123.40, p < 0.001), which indicated that the explanatory variables 
jointly explained a significant proportion of the variation in grain yield. Leaf area index, plant biomass, and nitrogen-
use efficiency were significant positive predictors of grain yield, whereas nitrogen rate showed diminishing returns 

when efficiency variables were included. These findings align⁠ closely with the PCA results, reinforcing the interpretation 
of PC1 as a productivity and nitrogen-response axis. The strong influence of nitrogen-use efficiency emphasizes that 
yield improvement in sesame depends not only on nitrogen supply but also on the plant’s capacity to utilize applied 
nitrogen efficiently. The negative coefficient associated with nitrogen level in the regression model, when efficiency-
related variables were included, suggests diminishing returns at higher nitrogen rates. This result likely reflects 
multicollinearity between nitrogen level and nitrogen-use efficiency and indicates that excessive nitrogen application 

may not translate into proportional yield gains. Similar patterns ⁠ of diminishing nitrogen response have been 
documented in oilseed crops, where excessive nitrogen can promote vegetative growth at the expense of reproductive 
development and efficiency (Dobermann, 2007; Ladha et al., 2016). Diagnostic tests confirmed model adequacy. 

5. Conclusion  

This study applied a principal component and regression approach to identify nitrogen-driven determinants of grain 
yield in sesame (Sesamum indicum L.). The results demonstrated that yield variation was primarily governed by canopy 
development, biomass accumulation, and nitrogen-use efficiency rather than nitrogen application rate alone. The first 
principal component, representing a productivity and nitrogen-response axis, explained the largest proportion of 

variability and was strongly associated with leaf area index, plant biomass⁠, and efficiency-related traits. The regression 

analysis confirmed that leaf area index at 6 weeks after sowing, plant biomass, and nitrogen-use efficiency ⁠ were 

significant positive predictors ⁠ of grain yield, while excessive nitrogen rates showed diminishing returns when efficiency 

variables were considered. Overall, the ⁠ findings highlight the importance of ⁠ efficiency-based nitrogen management 
strategies for improving sesame productivity.  

Recommendations  

On the basis of the finding from this study, nitrogen management in sesame production should prioritize practices that 
enhance nitrogen-use efficiency and early canopy development rather than solely increasing fertilizer application rates. 
Agronomic intervention that promotes biomass accumulation, such as appropriate nitrogen timing and 
balanced nutrient supply, should be emphasized to maximize grain yield.  

 



International Journal of Science and Research Archive, 2026, 18(02), 386-393 

393 

• Strength and limitations of the study  

A major strength of this study lies in the integration of multivariate and regression analyses, which allowed for both 
dimensional reduction and causal iinterpretation of yield determinants. However, the study was based on 
aggregated experimental data from a single season, and environmental variability across seasons and locations was not 
explicitly modelled.  

Future research 

Future research should incorporate multi-season and multi-location trials to validate the stability of the identified yield 
determinants under diverse agro-ecological conditions. Further studies should examine the interaction between 

nitrogen management and grain quality traits to develop integrated strategies that ⁠ optimize both productivity and food 
safety also, mixed-effects modelling could further strengthen the generalizability of the findings.  
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