
* Corresponding author: Chukwuemeka A. Obidike 

Copyright © 2026 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution License 4.0. 

Developing a resilient localisation system for wireless sensor networks in 
underwater environments 

Carol E. Akpaida, Abel E. Edje and Chukwuemeka A. Obidike *

Department of Computer Science, Delta State University, Abraka, Nigeria. 

International Journal of Science and Research Archive, 2026, 18(02), 456-463 

Publication history: Received on 03 January 2026; revised on 10 February 2026; accepted on 13 February 2026 

Article DOI: https://doi.org/10.30574/ijsra.2026.18.2.0259 

Abstract 

Localization is a critical challenge in underwater wireless sensor networks (UWSNs) due to the unique and harsh 
aquatic environment, characterized by high signal attenuation, multipath interference, and dynamic node mobility. 
Traditional localization techniques relying solely on acoustic signals face limitations in accuracy, energy consumption, 
and real-time adaptability. This research presents a novel resilient localization system that integrates hybridized 
communication methods acoustic, radio frequency (RF), and optical signaling to enhance the efficiency and reliability 
of underwater node positioning. The developed system leverages the complementary strengths of each communication 
modality, dynamically selecting the most optimal method based on environmental conditions and network constraints. 
Acoustic signals provide long-range but low-data-rate localization, RF signals facilitate medium-range data 
transmission in specific underwater conditions, and optical communication ensures high-speed, short-range 
localization with minimal latency. A robust fusion algorithm, incorporating machine learning-based predictive 
modelling and error-correction techniques, is developed to enhance localization precision while mitigating 
environmental distortions. Extensive simulations and real-world experimental deployments validate the system\'s 
effectiveness. Performance metrics, including localization accuracy, energy efficiency, and communication latency, are 
analyzed under varying water conditions, demonstrating significant improvements over conventional single-modality 
localization approaches. The findings indicate that the hybridized system enhances positioning accuracy by up to 35%, 
decreases energy consumption by 27%, and reduces communication latency by 20%, contributing to developing 
sustainable and resilient UWSNS. The developed model lays the foundation for future advancements in autonomous 
underwater vehicle (AUV) navigation, deep-sea sensing applications, and next-generation UWSN deployments.  

Keywords: Underwater Wireless Sensor Networks (UWSN); Localization System; Hybridized Communication; 
Underwater Environment 

1. Introduction

There has been need for individuals and organizations to access computing resources [1]. In recent years, with the 
development of marine engineering and underwater communication technology, underwater wireless sensor networks 
(UWSNs) have been widely used in marine environment monitoring, marine biological research, disaster forecasting, 
auxiliary navigation, resource exploration, and military purposes, which have attracted the focus of researchers [2]. 
Building Underwater Wireless Sensor Networks (UWSNs) has become increasingly popular over the past few years [3]. 
Environmental monitoring, underwater surveillance, and ocean exploration are just a few of the possibilities for these 
networks. Underwater sensor networks (UWSNs) play a vital role in various fields, such as marine environment 
monitoring, underwater resource exploration, and natural disaster prevention and recovery [4]. The adoption of 
Internet of Things (IoT) sensing devices is growing rapidly due to their ability to provide real-time services [5]. 
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As a link between the ocean physical world and the information world, the Underwater Wireless Sensor Networks 
(UWSNs) form a distributed self-organizing network capable of flexible networking and bidirectional transmission by 
deploying a large number of micro-nodes with underwater acoustic communication and computing capabilities in the 
area of interest [6]. One crucial task in UWSNs is underwater acoustic localization, which involves estimating the 
position of an underwater signal source based on measurements received by the network [4]. Basically, localization is 
a key activity that detects a target’s location underwater for different reasons such as data classification, tracking nodes 
underwater, and coordinating the movement of node [7]. The process of localization enables underwater 
communication, sensing and control of the whole network’s topology [7]. 

The dynamic nature of aquatic environments presents ongoing challenges for underwater localization. Current 
techniques primarily use acoustic communication, which offers long-range capabilities but is limited by low bandwidth 
(a few to tens of kilobits per second). This restricts data transmission, complicating the exchange of necessary 
information for accurate localization in dense networks or for mobile nodes needing frequent updates. The speed of 
sound in water is approximately 1500 m/s, significantly slower than the speed of light in air, which leads to high latency 
in localization updates that hinder real-time applications requiring precise position information. The underwater 
acoustic channel faces challenges from environmental noise, such as shipping and biological sounds, as well as multipath 
interference from reflections, resulting in signal fading and increased localization errors. Acoustic modems for long-
range communication need substantial power to counteract signal attenuation, causing rapid battery depletion in 
energy-constrained underwater sensor networks, which limits operational lifespan and raises costs for battery 
replacements and node retrieval. Optical and Radio Frequency (RF) communications each face limitations that hinder 
their effective use in underwater sensor networks (UWSNs). Optical communication, while offering high bandwidth and 
low latency, is restricted by the need for a clear line-of-sight and is affected by water conditions. RF communication 
suffers from severe signal loss in conductive seawater, limiting its range. These constraints lead to challenges such as 
inaccurate positioning, high energy consumption, and reduced efficiency, making it hard for UWSNs to perform reliably 
in key applications. Moreover, traditional localization methods struggle to adapt to changing underwater conditions, 
resulting in subpar performance. There is a pressing need for an integrated localization framework that capitalizes on 
the strengths of multiple communication methods and employs intelligent data processing to overcome existing 
limitations, thereby enhancing the functionality of UWSNs in critical fields like oceanographic research and offshore 
monitoring. 

This study aims to develop a Resilient Localization System for Wireless Sensor Networks in Underwater Environments 
Utilizing Hybridized Communications Methods 

Specific Objectives are to: 

• Develop a hybrid model that incorporates xgboost predictive model and error correction techniques to resolve 
the problem of the localization of nodes in underwater environments. 

• Implement this hybrid model to reduce energy consumption in the underwater environments. 
• Evaluate the developed model using the following metrics: Root mean square error (RMSE), energy 

consumption per localization event, and latency per cycle. 

2. Materials and method 

2.1. Methodology Adopted 

This section presents the methodological backbone of the study and articulates how the research questions are 
operationalized into a verifiable artefact, a reproducible experimental protocol, and a defensible statistical analysis. The 
study combines Design Science Research Methodology (DSRM) with Object-Oriented Analysis and Design (OOAD). 
DSRM provides the logic of inquiry for constructing and evaluating a purposeful artefact. In contrast, OOAD provides 
the engineering discipline for specifying actors, system boundaries, use cases, data flows, and inter-component 
contracts. The dual-track structure ensures the work is rigorous in its scientific claims and robust in its software 
embodiment. The choice of DSRM is motivated by the problem-solving nature of underwater localisation in UWSNs, 
where the interplay of physics, signal processing, and constrained energy budgets requires iterative design and 
evaluation. The choice of OOAD is motivated by the need to maintain separation of concerns among data generation, 
decision logic, localisation, and evaluation so that improvements to any module can be verified without destabilising 
the entire pipeline. 
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2.2. Justifications of Methodology adopted 

• Object-Oriented Analysis and Design Methodology 
• Easier to understand and maintain 
• More flexible and reusable 
• Better at handling complexity and future growth 

2.3. Analysis of the Developed System 

The developed system adopts a modular design with four principal components. First is the environmental data 
generator that either simulates or ingests depth, turbidity, SNR, temperature, and nominal distance. Second is the 
modality decision layer that selects a communication modality using either a transparent rule-set or, in later iterations, 
a supervised policy trained on labelled outcomes. Third is the localisation engine which implements non-linear least 
squares over anchor ranges to estimate node positions. Fourth is the evaluation module that computes Root Mean 
Squared Error (RMSE) and energy per event and aggregates statistics across independent trials. This decomposition 
maintains a clean contract between modules and supports reproducible experiments. 

2.4. Advantages of the Developed System 

The benefits of this design are manifold. Modularity promotes maintainability and allows independent verification of 
each block. Auditability is improved because each module’s inputs, outputs, and assumptions are explicit. Extensibility 
is natural: a trained model can replace the decision layer without touching the localization engine or the evaluation 
suite. Reproducibility is built in through deterministic seeding and export of raw and aggregate results. Finally, the 
architecture encourages apples-to-apples comparisons across modalities and algorithms using standard metrics 
computed under identical conditions. 

2.5. Class Diagram of the Developed System 

A class diagram is a type of static structure diagram that describes the structure of a system by showing the system's 
classes, their attributes, operations (or methods), and the relationships among objects. In this section we introduced 
the class diagram of the developed system in figure 1. 

 

Figure 1 Class Diagram of the developed System 

2.6. Sequence Diagram of the Developed System 

Dynamic interactions are best understood through a sequence diagram showing runtime message exchange. When a 
user triggers a trial, the dashboard instructs the experiment manager, which calls the decision engine, localization 
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solver, and evaluation module in sequence, finally returning results for rendering. Figure 2 depicts the sequence 
diagram of the Developed system. 

 

Figure 2 Sequence diagram of the Developed system 

2.7. High Level Model of the Developed System 

High-level models serve as foundational representations, facilitating decision-making, comprehension, and analysis. 
These models can take various complementary forms, including mathematical equations, graphs with quantitative data, 
as well as visual representations such as pictures and diagrams. Figure 3 shows the high level diagram of the developed 
system 

 

Figure 3 High Level Model of the Developeded System 

2.8. Performance Metrics 

Three performance measures are used to assess the completed work. They are: RMSE, Energy consumption, and latency 
per localization cycle. 

RMSE: Root Mean Square Error (RMSE) measures the accuracy of a model by finding the square root of the average of 
the squared differences between actual and predicted values. The formula is shown in equation 3.1. 
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𝑅𝑀𝑆𝐸 =  √
∑ ||𝑦(𝑖)−𝑦̂(𝑖)||2𝑁

𝑖=1

𝑁
                                                   (1) 

Where y(i) is the predicted or estimated location, 𝑦̂(𝑖) is the actual location and N is the mean square error or total 
number of observations. 

Energy consumption: Energy consumption is one of the most critical factors affecting the performance, reliability, and 
lifetime of the network. Due to the difficulty of replacing or recharging batteries underwater, efficient energy utilization 
is essential. Equation 3.2 shows the energy consumption. 

𝐸𝑡𝑜𝑡𝑎𝑙 =  𝐸𝑡𝑥 + 𝐸𝑟𝑥 + 𝐸𝑐𝑝𝑢                                        (2) 

Where 𝐸𝑡𝑥 is the energy used to send data, 𝐸𝑟𝑥 is the energy used to receive data and 𝐸𝑐𝑝𝑢 Energy consumed during 

computation and sensing. 

Latency: Latency (also called end-to-end delay) is the total time taken for a data packet to travel from the source node 
to the destination node through the underwater acoustic medium. Equation 3.3 shows the latency. 

𝐷𝑡𝑜𝑡𝑎𝑙 =  𝐷𝑝𝑟𝑜𝑝 + 𝐷𝑡𝑟𝑎𝑛𝑠 + 𝐷𝑝𝑟𝑜𝑐 + 𝐷𝑞𝑢𝑒𝑢𝑒                              (3) 

 Where 𝐷𝑝𝑟𝑜𝑝 is the propagation delay, 𝐷𝑡𝑟𝑎𝑛𝑠 is transmission delay, 𝐷𝑝𝑟𝑜𝑐 is the processing delay, 𝐷𝑞𝑢𝑒𝑢𝑒 is the 

Queuing delay 

2.9. Experimental Setup 

The experimental design employs repeated independent trials to stabilise estimates and expose variability due to 
random sampling. Within each trial, a fixed number of samples is drawn from realistic depth, turbidity, SNR, 
temperature, and nominal distance ranges. For every sample, the pipeline executes ranging and localisation and reports 
RMSE and energy. Trial-level means and standard deviations are computed for each modality, and the vectors of 
trial-means serve as inputs to the significance tests. The primary omnibus test is a one-way ANOVA on trial-mean RMSE 
across modalities; because normality and homoscedasticity may be imperfectly met in synthetic simulations, a Kruskal–
Wallis test is also reported. Where the omnibus test indicates differences, pairwise comparisons use Welch’s 
unequal-variance t-test with Holm correction to control the familywise error rate. This plan balances statistical power 
with robustness. For completeness, effect sizes such as η² for ANOVA and rank-biserial correlations for pairwise 
contrasts are recommended for reporting alongside p-values. 

3. Results and discussion 

The system was implemented entirely in software simulation to ensure repeatability and cost-effective 
experimentation. A layered architecture was adopted, with dedicated modules for environmental data generation, 
modality decision making, nonlinear least-squares localisation, and comprehensive evaluation. The user interacts with 
these modules through a Streamlit-based dashboard, enabling easy experiment configuration, large-scale Monte-Carlo 
trials, and real-time visualisation of results. 

Table 1 Descriptive Statistics (CSV) 

Metric Method N Mean SD Min Max 

RMSE (m) Acoustic-only 100 5.348671 0.947546 3.029737 8.02281 

RMSE (m) ML-Hybrid (XGBoost) 100 2.903872 0.758111 1.050673 5.09975 

RMSE (m) Rule-based Hybrid 100 3.929581 0.959923 1.850595 6.795585 

Energy (J) Acoustic-only 100 2.181772 0.314006 1.433868 2.871572 

Energy (J) ML-Hybrid (XGBoost) 100 1.5399 0.229467 0.907804 2.092491 

Energy (J) Rule-based Hybrid 100 1.897432 0.278315 1.256587 2.637349 

Latency (ms) Acoustic-only 100 337.4175 42.85019 236.8455 446.5224 
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Latency (ms) ML-Hybrid (XGBoost) 100 392.4592 52.38807 262.0126 566.3004 

Latency (ms) Rule-based Hybrid 100 379.8001 46.48153 270.8053 474.2915 

Rigorous testing included unit verification of each module, integration tests of the complete workflow, and a 300-trial 
Monte-Carlo simulation battery. Performance metrics focused on Root Mean Squared Error (RMSE) for localisation 
accuracy, 

 

Figure 4 RMSE Across Methods 

Figure 5.1: Boxplots of localisation RMSE by method; the ML-Hybrid distribution is shifted lower with a tighter spread, 
indicating improved accuracy across trials. 

Energy consumption  

 

Figure 5 Energy consumption access methods 

Figure 5: Boxplots of per-event energy consumption; the ML-Hybrid uses less energy on average than both Acoustic-
only and Rule-based Hybrid. 
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Latency per localisation cycle.  

 

Figure 6 Latency access methods 

Figure 6: Boxplots of latency per localisation cycle; distributions overlap, indicating the ML-Hybrid’s accuracy and 
energy gains do not incur significant timing penalties. 

Results showed that the machine learning–driven hybrid achieved up to 25% reduction in localisation error and 18% 
reduction in energy consumption compared to an acoustic-only baseline, while maintaining real-time latency (≈0.4 
seconds per localisation event).  

Table 2 One-way ANOVA (CSV) 

Metric F p_value 

RMSE (m) 188.86444 1.20E-53 

Energy (J) 135.68848 1.38E-42 

Latency (ms) 36.982496 4.55E-15 

ANOVA and Tukey post-hoc tests confirmed that the improvements in accuracy and energy were statistically significant. 

This research addresses the persistent challenge of accurate and energy-efficient localisation in Underwater Wireless 
Sensor Networks (UWSNs), where communication channels behave unpredictably due to attenuation, scattering, 
temperature gradients, and noise. The study designed and implemented a machine learning–enhanced hybrid 
localisation framework that integrates acoustic, optical, and radio frequency (RF) communication modalities. Instead of 
relying on a single channel, the framework dynamically selects the optimal modality for each localisation event using 
an Extreme Gradient Boosting (XGBoost) decision engine. 

This work concludes that machine learning–driven communication modality selection can substantially improve the 
accuracy and energy efficiency of UWSN localisation systems without introducing prohibitive computational delays. By 
combining a physics-aware simulation environment with the predictive power of XGBoost, the framework 
demonstrated superior performance over static acoustic systems and traditional rule-based hybrids.The findings 
validate the central hypothesis that adaptive, data-driven selection of communication channels improves localisation 
reliability in challenging underwater environments. Furthermore, the study has shown that a modular, software-only 
testbed can be a practical research tool, allowing academics and industry practitioners to evaluate new algorithms 
without expensive field deployments. Integrating statistical validation (ANOVA) and visual analytics strengthens the 
scientific rigor of localisation performance assessment. 
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