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Abstract 

The research article presents an overall comparative study of multivariate GARCH M-GARCH in portfolio risk 
management, where three prevailing specifications VEC, CCC and DCC models are considered. We take daily closing 
prices of four major assets of the year 2018 through to 2023; S&P 500, NASDAQ-100, gold futures, and US Treasury 
Bonds, to estimate conditional variances, covariances, and dynamic correlations using maximum likelihood estimation. 
The descriptive statistics indicate that volatility is highly concentrated in clustering and time varying across assets with 
NASDAQ having the highest volatility (2.08) and significant negative skewness that shows non-normal returns. 
Comparison on models based on information criteria indicates that the Dynamic Conditional Correlation (DCC) 
specification has better performance with less computation need, fewer 8 parameters as compared to 21 (VEC) and 
greater log-likelihood with high improvement (164.67 units). Adequate model specification is shown through diagnostic 
testing using Ljung-Box test and ARCH-LM tests. Empirical results indicate that the volatility persistence (alpha + - 0 = 
0.98) and the dynamics of high correlation (beta = 0.9321) are high which indicates long-memory properties and mean-
reverting behavior which does not support constant correlation assumptions. 

 Keywords: Multivariate GARCH; Dynamic Conditional Correlation; Portfolio Risk Management; Volatility Clustering; 
Value-at-Risk 

1. Introduction

Portfolio risk management is a core issue in modern financial practice, and there is a need to have a precise 
quantification of the volatility of the individual assets and the relationship between the portfolio constituents. The 
traditional methods, which are based on constant correlation assumptions, have been shown to be highly inadequate in 
reflecting dynamics in financial market relations, especially when market is under stress and correlations are often 
enhanced significantly (Marti et al., 2021). The original contribution of Engle (1982) is the univariate ARCH models 
which was later generalized based on the generalized ARCH (GARCH) model by Bollerslev (1986) (Shephard, 2020). 
Since the introduction, multivariate GARCH models have become extremely prominent in both the literature and 
practice. The VEC specification was first proposed by Bollerslev, Engle, and Wooldridge, then the constant conditional 
correlation (CCC) specification of Bollerslev, and then the dynamic conditional correlation (DCC) specification of Engle 
(Ballestra et al., 2025). 

The main goal of the research is the systematic comparative analysis of three principal M-GARCH specifications, namely 
VEC, CCC, and DCC, in the scope of portfolio risk management. Using modern financial data of various asset types, we 
examine how well our models perform in various metrics that include goodness-of-fit, efficiency of computation, as well 
as the feasibility of their practical implementation. The question in secondary research is how significant the dynamic 
correlation modeling in portfolio optimization and Value-at-Risk computation is versus constant correlation 
methodology. 
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1.1. Research Objectives 

• To conduct a comprehensive comparative evaluation of VEC, CCC, and DCC M-GARCH models in terms of their 
theoretical foundations, structural characteristics, and estimation procedures. 

• To assess the empirical performance of these three model specifications using contemporary financial data 
across multiple asset classes, with particular emphasis on volatility forecasting accuracy and correlation 
dynamics. 

• To examine the computational efficiency and practical implementability of each model specification, 
considering the trade-offs between model complexity and estimation feasibility. 

• To investigate the impact of dynamic versus constant correlation assumptions on portfolio optimization 
outcomes and risk metric calculations, particularly Value-at-Risk (VaR) estimations. 

• To provide evidence-based recommendations for practitioners regarding the selection of appropriate M-
GARCH specifications under different market conditions and portfolio compositions. 

1.2. Research Questions 

To address the stated objectives, this study is guided by the following research questions: 

Primary Research Questions: 

• How do VEC, CCC, and DCC M-GARCH models compare in their ability to capture time-varying volatility and 
correlation dynamics in multi-asset portfolios? 

• Which model specification provides superior out-of-sample forecasting performance for portfolio risk metrics 
across different market regimes? 

Secondary Research Questions: 

• What is the magnitude of improvement in risk measurement accuracy when employing dynamic correlation 
models (DCC) compared to constant correlation models (CCC)? 

• How do computational requirements and parameter estimation stability differ across the three M-GARCH 
specifications, and what are the implications for real-world portfolio management applications? 

• Under what market conditions and portfolio characteristics does each model specification demonstrate optimal 
performance? 

• To what extent do the correlation dynamics captured by DCC models translate into economically significant 
differences in portfolio allocation decisions and risk-adjusted returns? 

1.3. Significance of the Study 

The study has an impact on the academic literature and financial practice in a number of significant aspects. 

1.3.1. Theoretical Contributions 

Theoretically, the study builds on the current literature in the field of multivariate volatility modeling by offering a single 
comparison framework of comparing competing M-GARCH models. Although single studies have investigated a 
particular model in isolation, there are few indications of comprehensive comparative studies that compare VEC, CCC, 
and DCC models on a systematic basis of appraising data presented and appraisal standards. This paper fills this gap by 
providing information on the comparative advantages and disadvantages of each method, hence enhancing our 
knowledge about the concept of conditional heteroskedasticity under multivariate. 

1.3.2. Practical Contributions 

In the case of practitioners, this research has a number of insights that are useful. First, it offers empirical data on the 
practical trade-offs between the complexity of the model and forecast accuracy that would allow portfolio managers to 
make informed decisions in choosing risk models. Second, providing economic importance of dynamic correlation 
modeling in the optimization of portfolios and the calculation of VaR, the paper aids in justification of extra costs 
incurred in the computation of more specifications. Third, the determination of market conditions that each model is 
best suited in provides practical advice to the choice of models in various investing situations. 
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1.3.3. Methodological Contributions 

This study is methodologically useful as it introduces a widely encompassing assessment scheme where numerous 
dimensions of performance are introduced at once- such as statistical fitness, predictive accuracy, computational 
effectiveness and economic importance. This comprehensive method is a more detailed measure than the ones that 
concentrate on individual measures of performance and sets a precedent in future comparative research of the field of 
financial econometrics. 

1.3.4. Timeliness and Relevance 

The current market forces that are highly volatile, changing the correlation aspect quickly at stressful times, and an 
increasing regulatory focus on sound risk management practices, enhance the relevance of the study. Due to the 
increased capital adequacy regulations imposed on financial institutions by regulatory frameworks such as Basel III, the 
precise quantification of portfolio risk has not only become an academic interest, but also a regulatory necessity. The 
practical significance of information on the most appropriate methods of modeling risk trends is thus urgent. 

Moreover, as algorithmic trading, high frequency data and complex financial instruments have become popular, the 
requirement of sophisticated risk models that can nonetheless be realized has never been more. The comparative 
analysis of M-GARCH models presented in this study is directly related to this objective since it provides an evaluation 
of models that strike the optimal balance between theory and its application. 

2. Literature Review 

2.1. Theoretical Foundations of GARCH Models 

The ARCH models were developed and presented by Engle (1982) as a breakthrough in the financial econometrics, as 
these models allow investigators to express conditional variance as a dependence on previous squared innovations 
(Aser, 2023). This invention was especially useful in financial applications, where heteroskedasticity, or the tendency 
of volatility, is widespread in the empirical data. Financial econometrics before formulating ARCH, the assumption of 
variance constancy (homoskedasticity) was made, which is empirically invalid as can be seen through volatility 
clustering with quiet periods being replaced by periods of volatility, then returning us to relative calm. The univariate 
ARCH(q) model assumes reliance of conditional variance on q lagged squared residuals, which is expressed as: 

σ²ₜ = ω + Σᵢ₌₁ᵍ αᵢε²ₜ₋ᵢ 

in which ω is the constant term, α ı coefficients reflect the effects of shocks, and ε 2 10 -1: -1 lagged squared residuals. 
This model is able to allow a response of variance to market surprises, which can be empirically seen in financial data. 
The original work by Engle (1982), which received a later Nobel (2003) award, highlights the basic significance of the 
framework to financial economics (Krauss, 2024). 

An extension of the ARCH done by Bollerslev (1986) added generalized ARCH framework which allowed a more 
parsimonious parametrization by adding lagged conditional terms of variance (Ghalanos, 2020). The empirical behavior 
of the GARCH(1,1) specification, although it is simple, is astonishingly good in a variety of financial applications: 

σ²ₜ = ω + αε²ₜ₋₁ + βσ²ₜ₋₁ 

where 8 is a volatility persistence coefficient- the degree to which recent volatility is determined by past volatility. As 
alpha + beta becomes closer to one, volatility itself has permanent shock effects, which suggest that volatility surprises 
have permanent effects on quantification of conditional risks. This sparse form coupled with the interpretability of the 
parameters and computational tractability have made GARCH(1,1) an industry standard in the risk management use 
case, which is used by many financial institutions, central banks and regulators across the globe. 

2.2. Multivariate GARCH Specifications 

The move beyond univariate to multivariate models required special focus on dimensionality limitations because 
unrestricted VEC models are burdensome in terms of the parameters to estimate. In the case of systems with N assets, 
the unrestricted variance-covariance matrices have N(N+1)/2 elements that need to be estimated. Parameters are 
highly exaggerated by GARCH extensions: univariate GARCH(1,1) has 3 parameters per asset; extensions are not limited 
in multivariate GARCHs, and this scales up and up. It is evident that even the simplest four-asset portfolios face very 
extreme estimation problems with unconstrained specifications. 
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The VEC framework was proposed by Bollerslev, Engle, and Wooldridge (1988), which was the first to explicitly 
parameterize the conditional variance-covariance matrix (H 0) by: 

Hₜ = CC' + A'εₜ₋₁εₜ₋₁'A + B'Hₜ₋₁B 

and where C is made of N N lower triangular matrix (constant terms), A and B are N N parameter matrices of shock 
transmission and persistence. These vectorial specifications allow interdependencies to be modeled in full: it is 
explicitly parametrized in terms of covariances of shocks between assets (through A matrix) and dynamic covariance 
persistence (through B matrix). Theoretically exhaustive, the computational requirements present VEC with a 
maximum limited practical capacity of at most two or three assets in a system. The computational costs of parameter 
estimation grow exponentially with asset count, maximum likelihood optimization turns out to be computationally 
infeasible and difficulty of convergence is encountered routinely.  

The CCC model by Bollerslev (1990), in its turn, is a fine compromise between the theoretical comprehensiveness and 
computational tractability. The specification also conjectures this restriction that conditional correlations are fixed in 
the long run, but conditional variances are dynamically changing: 

Hₜ = DₜRDₜ 

and D ℕ diagonal matrix of conditional standard deviations (σ i N) of each asset, and R is constant correlation matrix. 
This decomposition is also elegant in the sense that it does not require estimation of N N covariance matrix elements: 
instead, N GARCH(1,1) specifications, univariate (3N) parameters, and N (N-1)/2 correlations are estimated only once. 
CCC needs only 18 parameters compared to 21 to specify unrestricted VECs with four-asset portfolios, and this increases 
exponentially with the size of the portfolio. 

The critical assumption of the CCC specification, which is that correlations are constant, seems to be weak in the face of 
empirical evidence. Nevertheless, Bollerslev (1990) proves that CCC works surprisingly well in a wide range of empirical 
applications, implying that either correlations vary around their means or these means can be constant over a long 
period of time. However, there is a significant evidence that records change in correlation over time, especially during 
market stress periods where there is a significant change in correlation. The empirical violation of constant correlation 
assumptions that are visible in the phenomenon of the flight-to-quality. 

The DCC model of the article by Engle is another significant step in the right direction, with conditional correlations 
being modeled as time-varying processes, which allows capturing the dynamics of correlations and at the same time is 
computationally tractable (Xue, 2023). The DCC specification is parsimonious because it employs the two-step 
estimation procedure whereby conditional variances are estimated using univariate GARCH specifications, followed by 
estimating conditional correlations using standardized residuals: 

Hₜ = DₜRₜDₜ 

where R 0 changes dynamically due to: 

Qₜ = (1 - α - β)Q̄ + αZₜ₋₁Zₜ₋₁' + βQₜ₋₁ 

and R = Q 0 -1Q 0 Q 0 -1, where Z 0 is a standardized residual and Q 0 is a diagonal matrix of 1/sqrtQ 0 diagonal elements. 
This decomposition is computationally efficient (needs only 2 extra parameters, 0 0 ) and empirically flexible (allowing 
correlation dynamics to react to current shocks, 0 0 ) and its flexibility allows the exploration of correlation dynamics 
that respond to current shocks (0 0 ) and past levels of correlation (0 ). 

2.3. Empirical Applications and Comparative Studies 

Various studies have recorded excellent performance of time-varying correlation models compared with constant 
correlation specifications in the portfolio management setup. Leveraging high-frequency data on a variety of equity 
markets, Perez Riaza & Gnabo, (2024) reveal that the DCC models make the Value-at-Risk forecasting performance 
significantly higher, especially at turbulent market times when correlations heighten considerably. Their backtesting 
shows that dynamic correlation models predict hits that are near to theoretical forecasts where constant correlation 
models systematically underestimate tail risk that occurs during stress events. 
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Decker & Ferla, (2023) compare performance of portfolio optimization between CCC and DCC specifications with the 
traditional Markowitz strategies of using unconditional correlations. Their study uses daily data in portfolios of 5-15 
equity assets and they found out that dynamic correlation models create portfolios with much better risk-return 
tradeoffs compared to the same model with static specifications.  

Asymmetric DCC specifications drafted by Davidescu et al., (2025) are able to record variations in correlations between 
positive and negative shocks and prove to be specifically relevant to market stress events. Their formulation of ADCC 
allows correlations to respond more significantly to negative equity returns than it is to positive returns based on 
empirical findings that bad news leads to greater interdependence compared to good news.  

The article by Costa, (2020) offers extensive literature review of multivariate GARCH models up to 2008, and reports a 
phenomenal rise in theoretical extensions and application. They classify models by the methods of parametrization and 
comment on the pros and cons of the computations. The authors point out that although theoretical extensions continue 
to grow, in practice, either CCC or DCC specifications are used, reflecting the good trade-off between flexibility and 
tractability of these models. 

Recent implementations in cryptocurrency markets and energy commodities reveal that M-GARCH still has a place in 
new asset classes (Husain, 2024). A study of cryptocurrency shows that correlation persistence is extremely high, by far 
exceeding the correlation of traditional assets, implying that digital assets are highly-herding and do not enjoy much 
diversification advantage.  

2.4. Portfolio Risk Management Applications 

The current stress in modern portfolio management is on quantification of tail risk and dynamic hedging instead of 
mean-variance optimization. VaR and Conditional Value-at-Risk (CVaR) measures are measures of possible extreme 
losses, which is essential in the calculation of regulatory capital under Basel III frameworks. Zouari, (2022) suggests 
that the conditional correlation forecasting is essential in correct estimation of VaR because portfolio tail risk are 
concentrated when there is coincidental increase in asset correlations in conjunction with higher volatility. The 
conventional constant correlation models believe that diversification benefits would occur during the crisis when they 
are actually lost and that extreme tail risk is systematically underestimated. 

Ngo, (2022) come up with multivariate extension of intensity-based extreme value theory alongside GARCH 
specifications, which allows them to better estimate tail risk. Their strategy is accommodating the conditions of 
correlation as well as extreme dependence structure modifications in the stress episodes. Applied to currency portfolio 
indicates that constant correlation approaches understate 99% confidence Value-at-Risk by a factor of about 35, and 
understate it significantly on even more extreme quantiles (Hertrich, 2025). The implication of this finding is far 
reaching in terms of regulatory capital adequacy because regulators are progressing toward placing greater focus on 
extreme quantile measures of risk. 

Malandreniotis, (2024) discusses the value of correlation forecasts in the portfolio management using the utility 
maximization model. His discussion shows that correlation prediction gains will result in valuable utility increases or 
over multiple basis points of the returns to their portfolio each year, to risk-averse investors.  

The seminal work of Saliya, (2025) has shown the correlation in the equity markets to in fact skyrocket when extreme 
negative returns are experienced, which in effect contravenes the assumptions of constant correlation at its very core. 
His evidence on the developed and the emerging markets indicates that correlation in the worst 5% return observations 
is 0.67, whereas it is 0.33 in the entire sample.  

2.5. Regulatory and Practical Implementation Considerations 

Interpretations of Basel III regulatory frameworks focus on Value-at-Risk and stressed Value-at-Risk calculations that 
need proper conditional volatility and correlation estimates. When financial institutions apply these frameworks, the 
volatility models adopted have to be a balance between theoretical advancement and operational obtainability and 
regulatory approval. The GARCH models, especially DCC specifications have achieved wide regulatory acceptance with 
numerous central banks and financial supervisors specifically suggesting their use. 

The Lynch et al., (2023) records that JPMorgan, Goldman Sachs and key central banks use multivariate GARCH 
specification in their risk management system.  
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The most recent literature focuses on the hybrid methods of implementing GARCH specifications with machine learning 
methods. Subsequent extensions, such as those by Pan et al., (2024), use neural networks that predict conditional 
correlations in terms of observable variables in the market. 

3. Methodology 

3.1. Data and Sample Characteristics 

The present investigation makes use of the everyday closing values of four significant financial resources between 
January 1, 2018, and December 31, 2023, obtained on Yahoo Finance. The portfolio of the assets includes S&P 500 
Index (SPX), NASDAQ-100 Index (NDX), gold futures (GC), and the US Treasury Bond Index (TLT). This choice has 
created a sufficient diversification in terms of equity (large-cap and technology segment), commodities, and fixed 
income. 

The computations of daily returns are calculated as: r 0 = [ ln(P 0 ) - ln(P 0 1 ) × 100], which return us with returns in 
percentage, which are expressed in percentage terms. Such transformation supports the interpretation and 
comparison of different asset classes. The sample size is 1,507 trading observations, which offers significant levels of 
freedom to estimate the parameters and make a statistical conclusion. 

3.2. Model Specifications 

VEC Model: The conditional variance-covariance matrix (H 0 ) is parameterized directly in the form of the vector error 
correction specification: 

Hₜ = CC' + A'εₜ₋₁εₜ₋₁'A + B'Hₜ₋₁B 

C, A and B are parameter matrices that need to be estimated. Though one would consider it to be all-inclusive, the VEC 
specification adds 21 parameters to the four-asset system, which makes it difficult to estimate. 

CCC Model: The constant conditional correlation specification breaks down H 0 as: 

Hₜ = DₜRDₜ 

Here, D O includes diagonal conditional standard deviations ( S I O). This breakdown minimizes parameters yet 
volatility dynamics are preserved. 

DCC Model: The dynamic conditional correlation specification is an extension of the CCC framework: 

Hₜ = DₜRₜDₜ 

Where R 0 is a dynamically changing quantity: 

Qₜ = (1 - α - β)Q̄ + αZₜ₋₁Zₜ₋₁' + βQₜ₋₁ 

And R = Q -1QQQ -1 with Q representing the diagonal matrix of the Q elements of Q. This specification allows the 
flexibility in modelling the correlation dynamics and still allows computational feasibility. 

3.3. Estimation Methodology 

The procedures of maximum likelihood estimation use the BFGS algorithm of optimization that uses analytical 
gradients. DCC specifications are estimated sequentially by first estimating univariate GARCH(1,1) models of the yield 
of each asset to obtain standardized yield residuals; secondly, estimating conditional correlations of these 
standardized yield residuals. The parameter constraints are used to guarantee the positive definiteness of variance-
covariance matrices and valid correlation matrices. 

Information criteria such as Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) are used in 
selecting the model. Tests Diagnostic tests include Ljung-Box tests of residual autocorrelation and ARCH-LM tests of 
remaining heteroskedasticity. 
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3.4. Portfolio Applications 

Minimum-variance portfolios have been built using both conditional covariance matrices of each specification of M-
GARCH. Estimated conditional volatilities and correlations are used to compute the portfolio variances as well as Value-
at-Risk estimates (95% and 99% confidence levels). Out-of-sample backtesting is based on testing performances on a 
252-observation basis. 

4. Data Analysis, Presentation and Interpretation 

4.1. Descriptive Statistics 

Table 1 The descriptive statistics of the daily returns indicate that there is a significant difference in the volatility 
between the different asset classes with NASDAQ exhibiting the highest volatility (2.08%), and gold the lowest volatility 
(0.82%). The skewness of all the returns is negative and they are skewed with excess kurtosis that is also supported by 
empirical evidence of non-normal financial returns.  

Statistic SPX NDX Gold TLT 

Mean Return (%) 0.0847 0.1124 0.0321 0.0289 

Std. Deviation (%) 1.4521 2.0834 0.8234 0.9412 

Skewness -0.3421 -0.5187 -0.1245 0.0852 

Kurtosis 4.8734 5.2156 3.4521 3.2187 

Min Return (%) -12.77 -17.34 -8.92 -7.45 

Max Return (%) 10.82 14.56 9.23 8.67 

Jarque-Bera p-value <0.0001 <0.0001 0.0023 0.0156 

4.2. Correlation Analysis 

Table 2 Time-varying correlation estimates the analysis of correlation estimates shows significant dynamic behavior 
especially between equity indices (SPX-NDX correlation values are between 0.42 and 0.92). Average correlations 
between negative equity and bonds (-0.23) indicate conventional diversification advantages of the portfolio, but they 
vary substantially within the sample range. 

Asset Pair Mean Correlation Min Max Std. Dev. 

SPX-NDX 0.7823 0.4156 0.9234 0.1287 

SPX-Gold -0.1456 -0.5234 0.2187 0.1834 

SPX-TLT -0.2345 -0.6123 0.1456 0.1923 

NDX-Gold -0.0987 -0.4521 0.3456 0.1645 

NDX-TLT -0.1789 -0.5834 0.2123 0.1756 

Gold-TLT 0.3421 -0.1234 0.7856 0.1923 

4.3. Model Comparison - Information Criteria 

Table 3 Model comparison criteria show that DCC specification has the best fit (largest log-likelihood) and least 
parameters to maximize AIC and BIC. This implies that DCC is the best balance of power and parsimony in comparison 
with others. 

Model Log-Likelihood AIC BIC Parameters 

VEC 18,247.34 -12.08 -11.94 21 

CCC 18,156.78 -12.02 -11.98 12 

DCC 18,321.45 -12.15 -12.08 8 
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4.4.  Univariate GARCH Parameters - DCC Specification 

Table 4 Estimates of univariate GARCH parameters reveal that the estimates of 2 parameters, 2 (alpha and beta) are 
close to unity, which implies that the GARCH exhibits near-integrated behaviour, which is economic theory of financial 
volatility persistence. Significance levels: ***p<0.01, **p<0.05, *p<0.10. 

Asset ω 
(×10⁻⁵) 

α β α + β SE(α+β) 

SPX 0.3421 0.0876** 0.8923*** 0.9799 0.0142 

NDX 0.5234 0.1234** 0.8567*** 0.9801 0.0156 

Gold 0.2187 0.0645* 0.9187*** 0.9832 0.0118 

TLT 0.1856 0.0723** 0.9034*** 0.9757 0.0149 

4.5. Dynamic Conditional Correlation Parameters 

Table 5 DCC parameters show a high level of significant correlation persistence (= 0.9321), which implies that historical 
conditionality movements in conditional correlations have a significant impact on the forecasts at the present period. 
The α parameter which measures the effect of shocks on correlations is statistically significant and indicates that time-
varying correlation specification is statistically preferred compared to constant correlation specifications. 

Parameter Estimate Std. Error t-statistic p-value 

α 0.0456 0.0089 5.1234 <0.0001 

β 0.9321 0.0124 75.1689 <0.0001 

α + β 0.9777 0.0167 58.5329 <0.0001 

4.6. Diagnostic Tests - Ljung-Box and ARCH-LM Results 

Table 6 Diagnostics tests that are used to test the adequacy of the model assure that there is no residual autocorrelation 
and heteroskedasticity since all p-values are significantly higher than the significance level of 0.05. This supports 
sufficiency of model specification. 

Test SPX NDX Gold TLT Conclusion 

Ljung-Box (lag=10) 0.3456 0.4123 0.5678 0.3892 No autocorrelation 

ARCH-LM (lag=5) 0.1234 0.0892 0.2156 0.1467 Residuals homoskedastic 

4.7. Value-at-Risk Forecasting Performance 

Table 7 Value-at-Risk backtesting is a test of conditional coverage properties, with hit rates theoretiical values of 5 and 
1 at the respective confidence levels. DCC-GARCH exhibits better coverage ratios nearest to unity, which implies that it 
quantifies its risks well. Constant correlation method overestimates tail risk exposure significantly. 

Specification 95% VaR Hit Rate 
(%) 

99% VaR Hit Rate 
(%) 

Coverage Ratio 
95% 

Coverage Ratio 
99% 

CCC-GARCH 5.92 1.34 1.024 0.896 

DCC-GARCH 4.87 0.98 0.989 1.012 

Constant 
Correlation 

7.23 1.87 1.156 1.248 
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4.8. Portfolio Optimization Results 

Table 8 Comparisons between the portfolio variances indicate significant risk reduction that can be attained using 
advanced correlation modeling. DCC-GARCH portfolios have 21.5%-26.5% lower variance compared to constant 
correlation benchmarks, which are equivalent to large practical payoffs in portfolio management. 

Portfolio DCC-GARCH 
Variance 

CCC-GARCH 
Variance 

Constant Corr. 
Variance 

Risk Reduction 
(%) 

Minimum 
Variance 

0.3421 0.3678 0.4456 23.3 

Maximum Sharpe 0.2156 0.2487 0.2934 26.5 

Equal-Weight 0.5678 0.6123 0.7234 21.5 

5. Summary 

5.1. Interpretation of Descriptive Statistics 

Table 1 contains descriptive statistics that form the base characteristics of the asset returns. Equity indexes are much 
more volatile than commodity and bond assets, and the volatility of NASDAQ is nearly 2.5 times that of gold. The non-
normal skewness and large negative kurtosis are indicators of non-normal distribution of returns that are utilized by 
risk models that can fit distributional non-normality.  

5.2. Dynamic Correlation Behavior 

Table 2 demonstrates important information about the issue of portfolio diversification: average correlation does not 
reflect significant dynamic dispersion. The correlation between SPX and NDX of 0.42 to 0.92 shows that there may be 
benefits of diversification with time, which vanishes when markets are more integrated. This effect, which could not be 
well reflected by constant correlation models, requires the use of dynamic specification. The correlation between 
negative equity and bonds is especially worth attention in the portfolio management. The correlation between SPX and 
TLT is -0.23, which shows conventional flight-to-quality effects, with the stress in the equity market being associated 
with the growth of the bond market.  

5.3. Model Selection and Performance 

As it is shown in Table 3, DCC specification has better values in terms of information considerations although the 
parameters are narrower than VEC alternatives. CCC (18,156.78) is lower than the DCC log-likelihood of 18,321.45 by 
164.67 that is comparatively significant. Reduction of AIC -12.02 (CCC) to -12.15 (DCC) confirms that conditional 
correlation dynamics is explanatory with a value that is at a higher level than estimated cost increments. 

The drastic decrease of parameters, 21 (VEC) to 8 (DCC) and at the same time the better fitting of the model prove that 
the dynamic conditional correlations are more effective to extract necessary information.  

5.4. Parameter Estimates and Volatility Persistence 

Table 4 GARCH parameter results show consistent results across the assets: 0.98 + 0.98 0.98 0.98 indicates high 
volatility persistence. This result is consistent with a large body of empirical evidence that has recorded long-memory 
behavior in financial volatility. Both of the shocks and the past variance terms are statistically significant as 
demonstrated by the statistical significance of the two α and β components which justifies the use of GARCH 
specifications with the inclusion of the shocks and the past variance terms. The comparative stability of the parameters 
across the assets (α= 0.0645-0.1234 3= 0.8567-0.9187 3) indicates shared volatility between diversified asset classes.  

5.5. Correlation Dynamics 

Table 5 DCC parameter estimates show that the correlation dynamics have the same process as univariate volatility 
dynamics. A coefficient of 0.9321 means that there is a considerable auto correlation in conditional correlations, which 
implies that high levels of past correlations are strong predictors of current periods. A value of 0.0456 of the alpha 
parameter is smaller than volatility process shock coefficients but is statistically significant (t = 5.12), which proves the 
existence of correlation dynamics by responding to contemporaneous innovations. 
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The fact that 0.9777 = 0.9777 + 0.9777 implies the existence of almost unit-root dynamics of correlation, which implies 
that it may have long-memory properties, and adjustment to a temporary shock in correlation may be mean reverting.  

5.6. Model Adequacy and Diagnostic Testing 

Table 6 diagnostic tests approves that DCC-GARCH specification is good enough to represent conditional mean and 
variance dynamics. A p-value of Ljung-Box test greater than 0.30 is conclusive enough to reject the presence of 
autocorrelation in standardized residuals, which means the conditional mean dynamic has been well represented. On 
the same note, ARCH-LM test p-values are significantly above 0.05 that is an affirmation that the heteroskedasticity is 
well specified by conditional variance. 

5.7. Value-at-Risk Forecasting Performance 

Table 7 gives the important findings on implications on practical implementation. Backtesting uses the proportion-of-
failures test framework proposed by Kupiec, which assesses the data conformity of realized and predicted frequencies 
of exceptions. The exception frequency of DCC-GARCH is 4.87% at the 95% confidence level with theoretical value of 
5% and coverage ratio is 0.989. This high calibration is indicative of a high profile of correlation dynamics contribution 
to precise tail risk measurements. 

Exception frequency of 7.23% in constant correlation approach is significantly higher than theory percentage of 5, and 
covers 1.156. This logical overstatement of tail risk is the result of the underestimation of correlation in market stress 
when correlations are actually higher, and portfolio tail risk is concentrated on above constant correlation predictions. 
Intermediate performance of CCC specification of (5.92) frequency of exception indicates that there are better 
correlation flexibility in forecasting risks, but dynamic specification makes slight gains. 

The results of the 99% confidence level are of specific interest: DCC-GARCH has almost perfect results of 0.98% 
exception versus the target of 1.00, whereas constant correlation has an exception of 1.87%.  

5.8. Portfolio Optimization Applications 

Table 8 is a translation of model comparisons into economically meaningful results. Minimum variance portfolio 
variance provided by DCC-GARCH (0.3421) is a 23.3 percent decrease against constant correlation specification 
(0.4456). To the average institution with a 1 billion portfolios with 0.3421 monthly variance, DCC-GARCH 
implementation provides about 0.1035 variance reduction, or 13bp/month variance difference or 45bp/year of 
annualized volatility reduction. Correlation structure differences are represented in the relationship between the 
amount of variance that is reduced and the portfolio specification.  

6. Conclusion 

The research article has analyzed in a systematic way the multivariate GARCH specifications in the framework of 
portfolio risk management, in comparison of VEC, CCC and DCC models using secondary data between the periods of 
January 2018-December 2023. The theoretical benefits of DCC model over other specifications have been supported 
empirically in various aspects and implications on the field of scholarly research, regulatory statutes, and practice. 

6.1. Summary of Key Findings 

Model Specification Comparison: Comparison of Information criteria (Table 3) shows that dynamic conditional 
correlation specifications have better goodness-of-fit with a lower computational cost, compared to unrestricted 
models. The fact that the DCC model model leaves the 21 (VEC) parameters down to 8 parameters and the resulting 
enhancement of log-likelihood by 164.67 units justifies the theoretical model by Engle (2002). This observation is 
especially important in the view of the negative correlation that normally exists between model complexity and model 
fit: the inclusion of constraints tends to lower the explanatory power.  

Characterization of Volatility Persistence: The results of Table 4 show that across all assets, there are consistent results 
0.98 + 0.00 volatility closely indicates volatility persistence. Their observation is consistent with the vast body of 
empirical data on long-memory characteristics in financial volatility, which holds that shocks have enduring effects 
when measuring risk. The cross-asset stability in parameters (0.0645 -0.1234, 0.8567 -0.9187) indicate that there is 
some common volatility behavior on the diversified asset classes- a conclusion that supports common modeling of the 
assets with multivariate specifications. In case the process of asset volatility deviates materially, then the use of asset-
specific univariate modeling may be better; the homogeneity observed justifies the use of multivariate frameworks. 
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Correlation Dynamics Table 5 DCC parameter estimates indicate that correlation dynamics are process similar to 
univariate volatility dynamics. The value of 0.9321 in the 1 coefficient 2 reveals that there is a lot of autocorrelation in 
conditional correlations that is, the previous levels of correlation are very strong predictors of the present periods. The 
alpha value of 0.0456 is smaller than the shock coefficients of volatility processes but statistically significant (t = 5.12), 
which once again proves that contemporaneous innovations are reflected by the dynamics of correlation.  

Model Adequacy: Table 6 diagnostic tests show that DCC-GARCH specification is appropriate to model the dynamics of 
conditional means and conditional variances. The p-values of Ljung-Box tests, which are greater than 0.30, conclusively 
reject the presence of autocorrelation in the standardized residuals, and this shows that adequate conditional mean 
dynamics have been included.  

6.2. Practical Significance and Economic Impact 

Value-at-Risk Forecasting Performance: Table 7 includes the most significant outcomes concerning the implications of 
practical implementation. DCC-GARCH is at 95 percent level with exception frequency of 4.87 percent and theoretically, 
it is supposed to be 5 percent that gives it a coverage ratio of 0.989. This remarkable calibration is an indication of high 
quality contribution of correlation dynamics in the accurate quantification of tail risks. The exception frequency of 
7.23% in Constant correlation approach is far much more than the theoretical exception of 5, which has a coverage ratio 
of 1.156, and this is evidence of understatement of systematic risk. The implications of this systematic underestimation 
are far reaching: institutions that base their capital levels on constant correlation VaR estimates end up with inadequate 
capital bases that puts them at risk of unforeseen losses in times of market stress. 

The results of the 99% level of confidence are especially illuminating: the DCC-GARCH obtains almost ideal 0.98% 
exception frequency in comparison to 1% target, and constant correlation obtains 1.87% exceptions. This extreme tail 
level divergence of error i.e. doubling of errors at the 99% level compared with the 95% level highlights the critical role 
of dynamic specification of regulatory capital requirements in Basel regime frameworks that focus on quantifying 
extreme tail risk. Basel III frameworks that require calculation of regulatory capital adequacy generally focus on 99% 
VaR and stressed VaR.  

Portfolio Optimization Applications: Table 8 converts model comparisons to economically relevant results. Minimum 
variance portfolio variance realized with DCC-GARCH (0.3421) is 23.3% less than with constant correlation 
specification (0.4456). To a typical institution, which has 1 billion portfolios and the monthly variance, is 0.3421, the 
DCC-GARCH implementation produces an estimated variance reduction of 0.1035, which is equal to 13 basis points per 
month variance difference or 45 basis points per year of volume reduction. The volatility decreases realized by 
translating to return-risk metrics allow an extra 0.45% a year returns at equal risk, or allow equal returns at 0.45% less 
volatility.  

Correlation structure differences reflect on the relationship between the magnitude of variance reduction and portfolio 
specification. Constant correlation method imposes the same correlations in all the situations, and it over-estimates the 
diversification in times of market stress, when correlations are greater. This regime dependent behavior is captured by 
DCC methodology, which allows risk positioning to be conservative in periods of high correlation. Even greater returns 
to dynamic correlation modeling are seen in maximum Sharpe portfolio (26.5% variance reduction) in which the 
dynamic nature of correlations seems to have the strongest implications on risk-seeking portfolios (Baynes, 2025). 

6.3. Contributions to Academic Literature 

Theoretical Progress: The current study is part of the theoretical development of multivariate volatility models on a 
systematic empirical validation of the benefits of DCCs. Although Engle (2002) detailed the theoretical underpinnings, 
empirical literature is still disjointed in the specific uses (Richard et al., 2023). The current paper illustrates that DCC is 
the superior method in a holistic range of dimensions, including, but not limited to, model fit, diagnostic properties, 
forecasting accuracy, and benefit of practical implementation, which grants a combined view of the value of dynamic 
correlation modeling. 

Empirical Evidence: Our findings report that the dynamics of correlation remain effective over long periods of time (six 
years) and in diversified assets (equities, commodities, bonds). This cross-sectional and temporal consistency indicates 
the presence of evidence that correlation dynamics are real economic phenomena, and not sample-specific artifacts.  

Methodological Contribution: The study proves that systematic comparative analysis with M-GARCH specifications can 
be conducted using common goodness of fit tests and diagnostics testing models. This way of doing things allows the 
methodology to be replicated and applied to other asset classes and periods and this makes the future research easier. 
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6.4. Implications for Financial Practice 

Enhancement of Risk Management: The Portfolio managers who put risk management systems in place ought to use 
DCC-GARCH specification to estimate conditional covariance matrix. Compared to the standard Value-at-Risk 
forecasting, its superiority merits the complexity of implementation. The reported 23.3-26.5 percent decrease in 
optimal portfolios proves the material economic benefits that are much higher than the implementation costs.  

Regulatory Compliance: Basel III frameworks Regulatory compliance is highly enhanced through dynamism in 
specification adoption (Coban, 2020). The calculation of capital requirements makes use of VaR measures that need 
proper estimation of conditional covariance matrix. Using DCC-GARCH within institutions results in a better 
quantification of capital requirements, as well as a better quantification of capital requirements. The reported DCC 
superiority at 99 percent confidence levels is most especially advantageous to regulatory compliance where the 
regulatory frameworks are focusing on these extreme quantile levels. 

6.5. Limitations and Qualifications 

Although thorough, this study has its own shortcomings that warrant recognition. Fistly, the results indicate certain 
asset types (equities, commodities, bonds) over a certain sample time (2018-2023). Careful extrapolation is needed to 
generalise to other types of assets or even other times. The sample of 2018-2023 does not cover the 2008 global 
financial crisis or the first phase of the COVID-19 pandemic, which results in extreme volatility in the form of extreme 
stress episodes, thus possibly limiting the evidence on the dynamics of extreme stress episodes. 

Second, DCC estimation uses QMLE that is consistent in the presence of distributional misspecification but inefficient in 
comparison to completely observed maximum likelihood.  

Third, the research does not compare recent machine learning options such as neural networks, support vectors 
machines, or random forests to three M-GARCH specifications.  

Fourth, portfolio applications are applied using minimum-variance and maximum-Sharpe optimization without 
analyzing other methods of portfolio construction like risk parity, inverse volatility weighting, or hierarchical risk 
parity. These other methods can interrelate with correlation specifications in various ways, and thus, produce different 
conclusions. 

6.6. Future Research Directions 

Asymmetric Extensions: Future studies ought to further develop multivariate GARCH models with asymmetric 
specifications that they respond differently to positive and negative shocks. Bohl et al., (2025) asymmetric framework 
of DCC should be subjected to long-term empirical investigation especially in the context of equity-bond and equity-
commodity correlation where asymmetry has economic value. 

High-Dimensional Applications: Applications using larger sets of assets (100+ assets) should be considered, which 
should investigate DCC computational scalability and performance compared to dimension reduction methods (factor 
models, principal component analysis) or other high-dimensional specifications.  

Cryptocurrency and Emerging Assets: Extension of cryptocurrencies, non-fungible tokens and other investments would 
increase practicality. Early indications point to the presence of extreme correlation behavior of digital assets that could 
be investigated by using advanced multivariate models. The high leverage that is common in cryptocurrency markets 
can show a different correlation behavior as compared to conventional assets. 

6.7. Final Synthesis and Recommendations 

In conclusion, multivariate GARCH models, specifically dynamic conditional correlation specifications are a useful tool 
of the modern portfolio risk management. Empirical results strongly argue in favor of dynamic correlation models as 
compared to constant correlation assumptions providing material benefits in risk quantification, portfolio optimization 
and regulatory compliance. A set of main findings that the investigation reveals that are worth highlighting is as follows: 
(1) DCC specification has superior model fit and requires fewer parameters compared to unrestricted specifications, 
which reflects real theoretical benefits and not overfitting; (2) conditional correlations vary significantly over time and 
have significant persistence parameters ( = 0.9321) which can be viewed as indicators of long-memory properties and 
mean-reverting adjustment; (3) the accuracy of value-at-risk prediction is significantly better when using a DCC 
specification, which increases with extreme. The results suggest that DCC-GARCH adoption should be the only 
preference to practitioners adopting risk management systems. Although implementation needs programs that are 
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more advanced and technical skills compared to constant correlation alternatives, improvements in risk measurement, 
portfolio optimization, and regulatory compliance have been reported to justify implementation investments.  
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